Aerothermodynamics and Fluid Mechanics

This area involves study and research in experimental, theoretical, and computational aerodynamics, gas dynamics, turbulence, plasma dynamics, heat transfer, and combustion. Research is presently being conducted in non-equilibrium and rarefied gas flows, turbulence control, shock-boundary layer interactions, thermal and glow-discharge plasmas, turbulent mixing/combustion, numerical methods for turbulent reacting flows, multiphase combustion, nanoparticle synthesis in flames, and advanced optical diagnostics and sensors. Facilities include Mach 2 and Mach 5 blowdown wind tunnels, 1.25-second low-gravity drop tower, 5' by 7' low-speed wind tunnel, 15" by 20" water channel, laser sensors laboratory, combustion facilities, plasma engineering laboratory and extensive laser and camera systems for advanced flow diagnostics. The excellent computational facilities include a variety of workstations, a 256-core Linux cluster, and access to very large scale, high-performance computers.

Solids, Structures and Materials

This area involves study and research in mechanics of composite materials, fracture mechanics, nano and micromechanics of materials, constitutive equations, mechanical behavior at high strain rates, structural analysis, and structural stability.

Experimental facilities include equipment for static structural testing; digital data acquisition equipment; uniaxial and biaxial materials-testing machines; custom loading devices; environmental chambers; microscopes; photomechanics facilities; composites processing equipment; facilities for microstructural analysis; and high-speed imaging and high strain rate mechanical testing facilities. Equipment for nano and microscale scale experiments include an atomic force microscope, an interfacial force microscope, a nano indentor, a confocal microscope and an X-ray tomography device. Computing facilities include workstations, high-performance computers, and networks of workstations.

Controls, Autonomy and Robotics

This area involves research in system theory, controls, networks, autonomy, and robotics with applications to the navigation, guidance, control, and flight mechanics of space, air, sea, and land based vehicles. Major research topics include onboard-optimal path-planning, differential games, hybrid-systems analysis, learning-based control, multi-vehicle coordination, swarm systems, vision and radio-based navigation, controlled-mobility wireless networks, robust communications, trust, and the study of human-robot interaction problems. Several of these projects are sponsored by: the Defense Advanced Research Projects Agency, the Air Force Office of Scientific Research, the National Science Foundation, the Office of Naval Research, the Missile Defense Agency, National Aeronautics and Space Administration, and the Jet Propulsion Laboratories.

Orbital Mechanics

This area involves study and research in the applications of orbital mechanics and remote sensing in the context of spacecraft and celestial bodies. Applications and customers include NASA, military, a variety of governmental agencies, and the rapidly growing commercial space industry.

Research in spaceflight mechanics includes trajectory and mission design, nonlinear optimization, numerical methods, perturbations, dynamical systems theory, high fidelity simulation, and high performance computing. Research in nonlinear estimation provides observable properties of dynamical systems in order to enable autonomous operations of spacecraft and ground-based tracking for satellite applications and situational awareness. Research in space domain awareness and space traffic management seeks to develop and deliver the decision-making science for the space community. 

Example topics include space object detection, tracking, identification, and characterization via multi-source information collection, curation, and fusion. Research in satellite applications include the development of space geodetic and both active and passive satellite remote sensing techniques, such as Interferometric Synthetic Aperture Radar (InSAR), laser and microwave tracking of satellites, and the Global Navigation Satellite Systems (GNSS). Application areas include measurement and interpretation of global Earth System variables such as the gravity field, loading, Earth rotation, and terrestrial reference frames; their application to research in the atmosphere, biosphere, cryosphere, and hydrosphere, as well as their mutual interactions; and GNSS signals, assurance, and applications for navigation and precise positioning.

Research is supported by a large database of satellite remote sensing measurements, state-of-the-art high performance computing resources, GPS receivers, and image processing equipment.

Aerospace Engineering Graduate Courses

View the catalog course listing of ASE graduate courses.

Learn more >>

robotic arms

Robotics Graduate Portfolio Program

Students in the Robotics Portfolio Program at UT Austin will receive multidisciplinary training in robotics by completing core coursework offered by the Department of Computer Science and the Department of Mechanical Engineering, and selecting from among additional approved courses from these departments and/or Aerospace Engineering, and the School of Information.

Learn more >>