utwordmark

Computational Mechanics

compuational image
This area involves study and research on theoretical and implementational aspects of numerical simulations: applied mathematics (functional analysis, partial differential equations, dynamical systems), numerical analysis (a- priori and a-posteriori error estimation, adaptive algorithms, stochasticity), computer science (high performance linear algebra, parallel computing), software engineering (programming in Fortran 90, C, C++ , data structures),visualization and geometry modeling, and mathematical modeling (multiscale, multiphysics problems).

Applications span across all disciplines of mechanics and related coupled, multiphysics problems: computational solid mechanics (fractures, phase transitions, plasticity, pattern formation), computational fluid mechanics and transport, semiconductor modeling, subsurface (multiphase flow in porous media) and surface flows, environmental modeling and remediation, computational wave propagation (elastodynamics, acoustics, electromagnetics), bioinformatics and bioengineering, computational material science. The program is closely related to graduate programs in Engineering Mechanics and the interdisciplinary programs in Computational and Applied Mathematics and Computational Engineering Sciences.

Area Faculty

Area Coordinator: Dawson, Clint

Babuska, Ivo
Dawson, Clint
Demkowicz, Leszek
Hughes, Thomas
Oden, J. Tinsley
Rodin, Gregory
Wheeler, Mary

 

Research Spotlight: Professor Thomas Hughes

Thomas Hughes

Professor Thomas J.R. Hughes' Blood Flow Model Offers Life-Saving Solutions

For one professor in the Department of Aerospace Engineering and Engineering Mechanics, spending time crunching numbers is leading to technologies that could save lives. Dr. Thomas Hughes and his colleagues have pioneered patient-specific 3-D models of blood flow through the heart and blood vessels that could help guide best practices for cardiologists.

Read more...