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Elastic-Viscoelastic Bilayer Thin

This paper develops a model for evolving wrinkles in a bilayer thin film consisting of an
elastic layer and a viscoelastic layer. The elastic layer is subjected to a compressive
residual stress and is modeled by the nonlinear von Karman plate theory. A thin-layer
approximation is developed for the viscoelastic layer. The stability of the bilayer and the
evolution of wrinkles are studied first by a linear perturbation analysis and then by
numerical simulations. Three stages of the wrinkle evolution are identified: initial growth

of the fastest growing mode, intermediate growth with mode transition, and, finally, an
equilibrium wrinkle state. [DOIL: 10.1115/1.2043191]

1 Introduction

Complex wrinkle patterns have been observed in various thin-
film systems, typically with integrated hard and soft materials.
The wrinkles are a nuisance in some applications [1,2], but may
be used as stretchable interconnects for flexible electronics [3,4]
or biological assays [5]. Diverse wrinkle patterns can be generated
by engineering the surface structures or chemistry with potential
applications for micro- and nanoscale fabrication [6,7]. It is also
possible to extract mechanical properties (e.g., elastic modulus
and residual stress) of both organic and inorganic thin-film mate-
rials from wrinkle patterns [8,9]. Quantitative understanding of
the wrinkling behavior is essential for these applications.

The underlying mechanism of wrinkling has been generally un-
derstood as a stress-driven instability, similar to Euler buckling of
an elastic column under compression. For a solid film bonded to a
substrate, however, the instability is constrained. If the substrate is
elastic, there exists a critical compressive stress beyond which the
film wrinkles with a particular wavelength selected by minimizing
the total elastic energy in the film and the substrate [10—12]. Un-
der a typical compressive stress, a wrinkle forms when the sub-
strate is considerably softer than the film. If the substrate is vis-
cous (e.g., glasses and polymers at high temperatures), wrinkling
becomes a kinetic process [13,14]. Since the viscous substrate
does not store elastic energy, a compressed blanket film on top is
always energetically unstable. The viscous flow in the substrate
controls the kinetics of wrinkle growth, selecting a fastest growing
wavelength. More generally, if the substrate is viscoelastic (e.g.,
cross-linked polymers), both energetics and kinetics play impor-
tant roles. A spectrum of evolving wrinkle patterns has been ob-
served, experimentally, in metal/polymer bilayers [15], exhibiting
a peculiar kinetic process. A linear perturbation analysis has
shown that the viscoelastic property of the substrate has a pro-
found effect on the stability and kinetics of the wrinkling process
[16]. This paper develops a model that allows direct simulation of
wrinkle evolution in thin elastic-viscoelastic bilayers beyond the
limit of linear perturbation analysis.

The plan of the paper is as follows. Section 2 presents the
model formulation, which consists of a summary of the nonlinear
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von Karman plate theory for the elastic layer and the development
of a thin-layer approximation for the viscoelastic layer. Although
the model is applicable for two-dimensional wrinkle patterns, the
remainder of this study focuses on one-dimensional wrinkles un-
der the plane-strain condition. Section 3 performs a linear pertur-
bation analysis. Section 4 reviews a solution for the equilibrium
state at the elastic limit. In Sec. 5, numerical simulations are con-
ducted, showing the transient evolution process. Section 6 con-
cludes with a summary of results.

2 Model Formulation

Figure 1 shows the model structure considered in this study: an
elastic layer of thickness /i, lying on a viscoelastic layer of thick-
ness H, which, in turn, lies on a rigid substrate. At the reference
state (Fig. 1(a)), both layers are flat, and the elastic layer is sub-
jected to an in-plane biaxial compressive stress oy (i.e., gy<<0).
The surface of the bilayer is free of tractions. Upon wrinkling
(Fig. 1(b)), the elastic layer undergoes both in-plane and out-of-
plane displacements to relax the residual stress, and the viscoelas-
tic layer deforms concomitantly. Both the upper and lower inter-
faces of the viscoelastic layer are assumed to remain bonded. This
section develops a model that couples the elastic and viscoelastic
deformation in the bilayer. For convenience, a Cartesian coordi-
nate system is set up with the x;-x, plane coinciding with the
interface between the two layers, as shown in Fig. 1(a).

2.1 Deformation of the Elastic Layer. We employ the non-
linear von Karman plate theory [17] to model the elastic layer. Let
w be the lateral deflection, u, the in-plane displacement («
=1,2), ¢q the normal traction at the interface with the viscoelastic
layer, and 7, the shear tractions at the same interface. Equilibrium
requires that
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Fig. 1 Schematic of an elastic-viscoelastic bilayer on a rigid
substrate: (a) the reference state and (b) a wrinkled state
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Here Ey is the Young’s modulus of the elastic layer, v, the Pois-
son’s ratio, Dy the flexural rigidity, N,z the in-plane membrane
force, €48 the in-plane strain, and 5a3 the Kronecker delta. The
Greek subscripts « and [ take on the values of the in-plane coor-
dinates 1 and 2, and a repeated Greek subscript implies summa-
tion over 1 and 2.

Note that, a nonlinear term is included in Eq. (5) to account for
moderately large deflections of the elastic layer. In addition, the
coupling between the in-plane deformation and the lateral deflec-
tion in Eq. (1) introduces further nonlinearity. The nonlinear equa-
tions have been widely used for analyses of buckle-delamination
in thin films [18].

2.2 Deformation of a Viscoelastic Thin-Layer. Next con-
sider the viscoelastic layer. The linear theory of viscoelasticity
[19] is adopted, where the stress-strain relation is described in an
integral form with a shear relaxation modulus w(z) and Poisson’s
ratio (), both time dependent, in general. The Laplace transform
of the stress-strain relation has a form identical to that of linear
elasticity with the elastic shear modulus p and Poisson’s ratio v
replaced by su(s) and s¥(s), respectively, where a bar over a
variable designates its Laplace transform with respect to time ¢
and s is the transform variable. Therefore, the Laplace trans-
formed solution of a viscoelastic problem can be obtained directly
from the solution of a corresponding elastic problem, namely, the
correspondence principle. The final solution for the viscoelastic
problem can then be realized upon inverting the transformed
solution.

For the present study, the viscoelastic layer is stress free ini-
tially (+=0) and subjected to normal and shear tractions at the top
surface for >0, namely,

033=85(x1,X5,1) and 03, = S,(x1,X,,1) at x3=0 (6)

At the lower interface, the displacement is fixed
Mﬂ=u3=oatX3=—H (7)

In the following, a thin-layer approximation is developed to solve
for the response of the viscoelastic layer subjected to arbitrary
tractions.

A previous study by Huang [16] solved a similar problem, but
under the plane-strain condition, where S,=u,=0, and the trac-
tions at the top surface take the form
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= A(t)sin kx, (8)

S5 = B(1)cos kx, 9)

with a constant wave number k and arbitrarily time-dependent
amplitudes A(z) and B(z). The Laplace transform of the displace-
ments at the top surface was obtained as follows:

1
i (x,,8) = 2ksjils) [711(SV kH)A(S) + Y12(sV,kH)B S)]Sln(kxl)
(10)
u3(xy,5) = s is )[721(”’ ,kH)A(s) + yp(s¥,kH)B(s)]cos(kx,)
(11)
where
= 1+« K sinh(2kH) + 2k1—f_ — (12)
k cosh?(kH) + (kH)? + (T)
. 1+« x sinh(2kH) — 2k1117 — (13)
x cosh®(kH) + (kH)? + (TK>
%sinhz(km + (kH)?
Yi2=%Yu= (14)

2
k cosh?(kH) + (kH)* + (1%()

and k=3-4s7(s).

The above solution shows that, in general, the surface of the
viscoelastic layer undergoes both out-of-plane and in-plane dis-
placements and they are coupled. However, in two special cases,
the two displacements can be decoupled. In the first case, the
viscoelastic layer is infinitely thick (kH — %) and incompressible
(v=0.5), which has been considered in the previous study [16]. In
the other case, as will be considered in the present study, the
viscoelastic layer is very thin (kH—0), for which Egs. (10) and
(11) reduce to

i (x;,8) = 2ks,t7,(s) [ZkHA(s) 20 )(kH)zB(s)] sin(kx,)
(15)
B 1 1-
it3(xy,s) = 2ks,a(s)[ 1 (kH)B( )
21(1 )(kH)zA(s)]cos(kx ) (16)

By the thin-layer approximation, only the leading terms in kH are
retained in Egs. (15) and (16). In addition, the Poisson’s ratio has
been assumed to be a constant independent of time, considering
the factor that the Poisson’s ratio is typically a weak function of
time. If the viscoelastic layer is incompressible (i.e., »=0.5), how-
ever, Eq. (16) takes a different form

i3(xy,s) = [ =(kH)3B(s) + (kH)ZA(s)]cos(kxl) (17)

2ksm(s) L3
where the first term in the brackets scales with (kH)> instead of
kH in Eq. (16). On the other hand, Eq. (15) remains valid. As will
be shown later, this leads to different kinetics of wrinkling for
compressible and incompressible viscoelastic layers.

To be specific, consider the Kelvin model of linear viscoelas-
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ticity, modeled by a mechanical analog consisting of a spring and
a dashpot in parallel, for which the relaxation modulus is

(1) = o, + (1) (18)

where u. is the stiffness of the spring, representing the elastic
shear modulus at the rubbery limit, and % is the viscosity. The
Laplace transform of the relaxation modulus is

i(s) = “— +7 (19)

After substituting (19) into Egs. (15) and (16), inverse Laplace
transform leads to

ou; H 1-4v H* 39Sy po.
ﬂ=_ 1~ __B—M_Ml (20)
a n 4(1-v) pdx; 7
uy; 1-2v H 1—4v H*3S; o
- = - ';+ T T T Uy (21)
a 200-v)np ° 4(0-v) px;, 7n °

Similarly, for an incompressible viscoelastic layer (v=0.5), the
inverse transform of Eq. (17) leads to
uy__HPS; H B pe

ot 37y 8x% 2ndx; 7w " @2
Equations (20) and (22) have the similar form as the Reynold’s
lubrication theory for nearly parallel flow of a thin liquid layer
[14,20], but with an additional term accounting for the elastic
limit of the viscoelastic layer.

For the present study, we assume a compressible viscoelastic
layer (i.e., v#0.5) and further neglect the H? terms in Egs. (20)
and (21) for thin-layer approximation, which leads to

o H o
2 Zg ey (23)
o 7

J 1-2v H o

My L-WH e 24

at _2(1—1/); i 7

Here the two traction components are assumed to have compa-
rable magnitudes and the thickness of the viscoelastic layer is
assumed to be small compared to the wavelength (L=27/k).
Equation (23) is equivalent to a shear lag model, which assumes
uniform shear stress across the thin layer. Similar models have
been used for both elastic and viscous layers [21,22]. Equation
(24) is similar to the Winkler model for elastic foundation [23] but
includes a time derivative term due to the viscous effect. The two
equations are uncoupled under the thin-layer approximation.

In the above development, plane-strain deformation and peri-
odic surface tractions have been assumed. The restriction of peri-
odic tractions has been relaxed by using differentiation of the
surface tractions with respect to x; in places of the particular wave
number after inverse Laplace transform. The resulting equations,
(20) and (21), are apparently independent of wave number and
can be used for arbitrary tractions by linear superposition of their
Fourier components. At the end, the in-plane and out-of-plane
responses are decoupled by the thin-layer approximation. There-
fore, the restriction of plane-strain deformation can be relaxed by
generalizing the in-plane response, Eq. (23), for both x; and x,
directions, which leads to

% — H S M

=" Oa~ Uy

P (25)

for a=1,2. Equations (24) and (25) then represent the approxi-
mate solution for the three-dimensional response of a thin vis-
coelastic layer subjected to the boundary conditions in Egs. (6)
and (7).

In the case of an incompressible viscoelastic layer, however, the
Winkler-type equation for the out-of-plane displacement (Eq.
(24)) breaks down and the decoupling is not applicable. The
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coupled equations, (20) and (22), must be used in this case. Gen-
eralization of the plane-strain response to the three-dimensional
would take the similar form as the lubrication theory [14], but will
not be further pursued in the present study.

2.3 Coupled Evolution Equations. The interface between
the elastic and viscoelastic layers is assumed to remain bonded
during deformation. Consequently, the displacements and trac-
tions are continuous across the interface, which couples the equi-
librium equations of the elastic layer, Egs. (1) and (2), with the
time-dependent responses of the viscoelastic layer, Eqs. (24) and
(25), and leads to

ow 1-2v H Fw Pw ON o5 IW
—= ol Df + Naﬁ + —
a 2(1-v) 7y 70X 0% ,OX g0X g Oxo0xg  Oxg 0x,
_ By, (26)
7
17/ H N, o
Mg HOWNap 'u—ua (27)

gt m dxg i

Equations (26) and (27) are coupled, nonlinear evolution equa-
tions, which may be solved numerically to simulate three-
dimensional deformation of an elastic-viscoelastic bilayer and
evolution of the resulting two-dimensional wrinkle patterns. In the
remainder of this paper, however, we focus our attention on plane-
strain deformation and one-dimensional wrinkles only, leaving the
two-dimensional wrinkles for a subsequent study. The reduced
equations for the plane-strain wrinkles are summarized as follows:

ow 1-2v H Iw Pw N w Moo
I D N e S s, (o)
a 2(0-v) 7y x ax®  dx ox 7
ou HOIN o
_uz___,u_u (29)
o mox 7@
Edy | du 1(aw)?
N= O-Ohf+ |:_M+_(_) :| (30)
1—1/_/2r ox 2\ ox

Recently, Huang et al. [24] developed a similar model to simu-
late the evolution of two-dimensional wrinkle patterns in elastic
films on soft substrates, where the viscoelastic Kelvin model was
used to relate the lateral deflection and the normal traction, similar
to Eq. (24), but the relation between the in-plane displacement and
the shear traction was taken to be linear elastic. While the atten-
tion there was focused on various equilibrium wrinkle patterns,
the interest of the present study is the temporal evolution of
wrinkles.

3 Linear Perturbation Analysis

Assume a small deflection of the elastic layer in the form of
(31)

For the linear perturbation analysis, the evolution of the in-plane
displacement is uncoupled from the lateral deflection and, there-
fore, ignored. Inserting (31) into Eq. (28) and retaining only the
leading-order terms in A, we obtain that

w(x,t) = A(t)cos kx

dA E;—
_=uA(,)

v (32)
where
e (1-20)k*Hhy L 1201- ) oy 33)
24(1-v)(1-1)) 4 E;

Solving Eq. (32) leads to
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Fig. 2 Initial growth rate as a function of wavelength by the
linear perturbation analysis, for various ratios between the rub-
bery modulus of the viscoelastic layer and the Young’s modu-
lus of the elastic layer

A(r)=A, exp(si) (34)
where A is the initial perturbation amplitude, 7=7/E; is a char-
acteristic time scale, and s=a— ../ E is the dimensionless growth
rate of the perturbation. The stability of the bilayer therefore de-
pends on the sign of the growth rate. If s <O for all wave numbers
k, the bilayer is stable and remains flat. Otherwise, if s >0 for any
permissible wave numbers, the bilayer is unstable and perturba-
tions grow to form wrinkles. In this case, the amplitude grows
exponentially with time at the initial stage. A more sophisticated
analysis [16] has shown that the initial growth can be nonexpo-
nential if the viscoelastic layer has a finite elastic modulus at the
glassy state (elastic limit as r—0).

Figure 2 plots the growth rate as a function of the perturbation
wavelength (L=2/k) for different ratios between the rubbery
modulus of the viscoelastic layer and the elastic modulus of the
elastic layer. At the limiting case when wu.=0, s=a and the
growth rate is positive (recall that oy<<0) for long wave pertur-
bations, as shown by the dashed line in Fig. 2. Consequently, the
bilayer is always unstable. The critical wavelength is

/ E
3(1- Vf)o'o

which is identical to the critical length of Euler buckling. The
growth rate is positive when L> L, and peaks at the wavelength

2
’ 3(1 - Vf)O'O

Similar results were obtained for an elastic film on a viscous layer
[14,25], where the fastest growing wavelength L,, is, however,
shorter by 13.4% due to the incompressibility of the viscous layer.
Using typical values for a thin aluminum layer: E;=70 GPa, v,
=0.35, h=40 nm, and 0(=-100 MPa, we obtain L.=2.05 um
and L,,=2.90 um. The latter compares closely to the initial wave-
lengths observed in experiments by Yoo and Lee [15] despite the
rough estimate of the stress.

As the ratio u../E; increases, the growth rate decreases; the
curve in Fig. 2 shifts down, but without any change in the shape.
As a result, the critical wavelength increases, and a second critical
wavelength emerges at the long wave end. The growth rate is now
positive within a window bounded by the two critical wave-

35)

(36)
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lengths. On the other hand, the fastest growing wavelength does
not change, but the corresponding growth rate decreases. The fast-
est growth rate reduces to zero at a critical ratio

(&> _3(1—1/%)(1—21/)5(@)2
Ef L._ 2(1—7/) hf Ef

The bilayer becomes stable when ../ Ef is greater than the critical
ratio. Alternatively, Eq. (37) may be rewritten to give the critical
compressive stress, below which a bilayer with the given thick-
ness ratio and moduli ratio is stable. The critical condition is iden-
tical to that for an elastic film on a thin elastic substrate with the
shear modulus w= ., [12,16].

It is noted that, by the critical condition in Eq. (37), the stability
of an elastic-viscoelastic bilayer depends on the rubbery modulus
(i.e., the long-term limit of the relaxation modulus) of the vis-
coelastic layer, but independent of the initial modulus (e.g., the
glassy state). In other words, despite that the viscoelastic layer is
initially stiff or even rigid, the bilayer “foresees” the subsequent
softening of the layer and becomes unstable spontaneously. The
time scale of wrinkle growth is proportional to the viscosity, and
the growth rate increases as the rubbery modulus decreases. The
wavelength of the fastest growing mode, however, is independent
of the viscoelastic layer, as given in Eq. (36). Our previous study
[16] showed that the fastest growing wavelength weakly depends
on the thickness ratio and Poisson’s ratio. The thin-layer approxi-
mation in the present study leads to a reasonably accurate wave-
length, but underestimates the growth rate for the fastest growing
mode when the thickness ratio H/hy is larger than 2.

(37)

4 Equilibrium Wrinkles

Setting d/dt=0 in Egs. (28) and (29) leads to two coupled non-
linear ordinary differential equations, from which one can solve
for equilibrium states. The solution is identical to that for an elas-
tic film on a thin elastic substrate with the shear modulus p= pi..
The latter has been obtained by an energy minimization procedure
[12,16], as summarized below. First, the equilibrium amplitude of
a sinusoidal wrinkle with a wave number k is given by

4 =2\x’1—v25_@_ (khp)®  2(1=v) ps 1 12
“ k E; 12(1-v) 1-2v E KHh;

(38)

It can be confirmed that only when the bilayer is unstable does
there exist nonzero, real-valued equilibrium wrinkle amplitudes.
Furthermore, minimization of the elastic strain energy in the bi-
layer with respect to the wave number selects an equilibrium

wrinkle wavelength
2(1-2 E H|"
] 220
3(1-v( - Vf) Mooy

The corresponding wrinkle amplitude can be obtained from Eq.
(38) with k=2m/L,,. Again, using typical values: E;=70 GPa,
vf=0.35, hf=40 nm, w,=0.01 MPa, v=0.45, H=400 nm, and
0y=—100 MPa, we obtain L,,=7.00 um and A,,=71.9 nm. It is
noted that Eq. (39) underestimates the equilibrium wavelength
when the thickness ratio H/hy is larger than 2.

Comparing the equilibrium wrinkle wavelength to the initially
fastest growing wavelength given by Eq. (36), we note that the
two wavelengths can be totally independent. The fastest growing
wavelength, which dominates the initial growth, is determined by
the kinetics and depends on the compressive stress in the elastic
layer, but independent of the viscoelastic layer. The equilibrium
wavelength, on the other hand, is determined by energetics and
depends on the thickness and rubbery modulus of the viscoelastic
layer, but independent of the stress in the elastic layer. Such inde-
pendence may enable simultaneous determination of the residual
stress and rubbery modulus from the initial and final wrinkle
wavelengths, respectively.

(39)
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Fig. 3 Evolution of the lateral deflection w and the in-plane
displacement u by numerical simulation with a sinusoidal ini-
tial perturbation

At the equilibrium state, the shear traction at the interface is
nearly zero and the lateral displacement approximately takes the
form [12,14]

(40)

where k=2/L,,. The wavelength of the in-plane displacement is
half of the wrinkle wavelength at the equilibrium state.

u = gkAZ, sin(2kx)

pm/Ef = 0.0001
G, = -0.01 Ef

H= 10hf J
V= 0.3
v=0.45

Wrinkle Amplitude, A/hf
o

—— Numerical simulation
- = =Linear perturbation analysis
------- Equilibrium amplitude

0.01 ; :
0 1 2 3 4 5

Normalized Time, t/t %10

Fig. 4 Amplitude of a sinusoidal wrinkle as a function of time
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Fig. 5 Numerical simulation of evolving wrinkles with a ran-
dom initial perturbation. The left column shows the deflection
of the elastic layer, and the right column shows the corre-
sponding Fourier spectra.

5 Numerical Simulations

In this section, we simulate the evolution of wrinkles by nu-
merically integrating the nonlinear equations, (28) and (29). For
simplicity, we use the explicit forward-time-center-space (FTCS)
finite difference method. The algorithm is conditionally stable. To
achieve sufficient accuracy, a small space step Ax is first specified.
Next, the time step At is determined by the stability and conver-
gence of the numerical results. In the following simulations, we
use Ax=1.0h; and At=0.1%/E,. The time is normalized by the
time scale 7=17/E;, which ranges widely from 1 usto s, de-
pending on the material of the viscoelastic layer and the tempera-
ture. In all simulations, the periodic boundary condition is as-
sumed.

The bilayer is in equilibrium at the reference state (Fig. 1(a))
with no tractions at the interface. By introducing a small pertur-
bation displacement to the reference state as the initial condition,
the system evolves until it reaches another equilibrium state. First,
we start with a sinusoidal deflection of amplitude Ay=0.01%; and
zero in-plane displacement at t=0. The wavelength L=30h; was
selected to be close to the fastest growing wavelength (L,
=26.9h/) to save the computational time. Other parameters are
09=-0.01E, ©.=0.0001E;, H=10h;, v,=0.3, and v=0.45. As
noted before, the present model underestimates the growth rate
and the equilibrium wavelength for thick viscoelastic layers (H
>2hy). Nevertheless, the wrinkling kinetics should be similar, and
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Fig. 6 Evolution of the dominant wrinkle wavelength by nu-
merical simulation: (a) short time evolution and (b) long time
evolution

in the numerical simulations, we use H= IOhf as in the metal/
polymer bilayer experiments by Yoo and Lee [15]. Figure 3 shows
snapshots of the evolving displacements. The amplitude of the
lateral deflection grows with time, but the wavelength remains
constant for the entire period of the simulation up to r=50,0007.
Meanwhile, relatively small in-plane displacement evolves con-
comitantly, but with a wavelength half of the wrinkle wavelength,
as predicted by the equilibrium solution in Eq. (40). Figure 4
shows the wrinkle amplitude as a function of time. The amplitude
first grows exponentially, as predicted by the linear perturbation
analysis (shown as the straight dashed line). Starting at about ¢
=20,0007, the growth rate deviates from the linear behavior and
gradually approaches a plateau. The amplitude essentially remains
constant after 1=40,0007, indicating that an equilibrium state has
been reached. The equilibrium amplitude given by Eq. (38) for the
selected wavelength (L=30/) is A,,=0.537h, as indicated by the
horizontal dotted line in Fig. 4. The result from the numerical
simulation agrees closely with the analytical solutions by the lin-
ear perturbation analysis at the initial stage and by the energetic
analysis for the equilibrium amplitude.

In the above simulation, the wrinkle wavelength is arbitrarily
selected a priori and the evolution stops when the corresponding
equilibrium state is reached. However, the wavelength is not nec-
essarily the equilibrium wavelength selected by energy minimiza-
tion, as given in Eq. (39). In other words, the equilibrium state
reached in the previous simulation is energetically unstable. To
further relax the strain energy, continual evolution is possible once
the equilibrium state is perturbed with different wavelengths [14].
In real situations, various sources (e.g., thermal fluctuation and
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Fig. 7 The root mean square (RMS) of the wrinkle as a func-
tion of time: (a) short-time evolution and (b) long-time
evolution

surface defects) may induce the initial perturbation, which is ran-
dom, in general. Figure 5 shows a numerical simulation of evolv-
ing wrinkles that starts from a random initial perturbation. The
in-plane displacement is again zero initially (not shown). Other
parameters are 0y=-0.01E; w.=0.00001E;, H=10h;, v;=0.3,
and v=0.45. For each snapshot of the wrinkle, the corresponding
Fourier spectrum is shown to the right. Although many wave-
lengths coexist in the initial perturbation, only those of interme-
diate wavelengths grow and the fastest growing wavelength domi-
nates at the initial stage. Consequently, an increasingly regular
wrinkle emerges from the initially random perturbation. As the
evolution continues, the amplitude grows and the wavelength in-
creases. After a sufficiently long time, only one wavelength re-
mains and the wrinkle reaches an equilibrium state. Figure 6 plots
the evolution of the dominant wavelength (maximum intensity in
the Fourier spectrum), and Fig. 7 shows the root-mean square
(rms) of the wrinkle as a function of time. Also plotted in Figs. 6
and 7 are the simulation results with a larger rubbery modulus,
#=0.0001E, for comparison.

From the numerical simulations, three stages of wrinkle evolu-
tion can be identified: initial growth of the fastest growing mode,
intermediate growth with mode transition, and, finally, an equilib-
rium wrinkle state. Such behavior qualitatively agrees with the
experimental observations in a metal/polymer bilayer film [15]. At
the initial stage, the wavelength of the fastest growing mode pre-
dicted by the linear perturbation analysis is L,,=26.9h, which is
independent of the rubbery modulus. Figure 6(a) shows that the
dominant wavelengths in the two simulations are indistinguish-
able up to =2 X 10*r, and the wavelength is close to the predicted
value. During this stage, the wrinkle amplitude grows exponen-
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tially, but the growth rate depends on the rubbery modulus. In
Figure 7(a), the two dashed lines indicate the exponential growth
predicted by the linear perturbation analysis, where the larger
modulus leads to slower growth. At the intermediate stage, both
the amplitude and wavelength of the wrinkle evolve toward the
equilibrium state. The analytical solutions for the equilibrium state
are indicated as dashed lines in Figs. 6(b) and 7(b). For u.
=0.00001Ef, the equilibrium wrinkle has a wavelength L,
=60.0h; and an amplitude A,,=1.63h; (rms=1.15k). For w.,
=0.0001Ey, the equilibrium wrinkle has a wavelength L,,
=33.7h; and an amplitude A,,=0.6194, (rms=0.438%,). The equi-
librium states agree closely with the numerical results. It is noted
that, although the initial growth is slower, the time to reach the
equilibrium state is significantly shorter with the larger rubbery
modulus for the viscoelastic layer.

6 Summary

We have developed a nonlinear model for temporal evolution of
wrinkles in elastic-viscoelastic bilayer thin films. The model
couples a nonlinear theory of elastic plates with a thin-layer ap-
proximation of linear viscoelastic responses. Although the model
is three-dimensional in nature, the analyses and numerical simu-
lations of the present study have focused on plane-strain deforma-
tion. Analytical solutions are obtained for the linear perturbation
analysis and the equilibrium state. Numerical simulations illus-
trate the evolution process from the initial growth to the equilib-
rium state. The results show that the kinetics of wrinkling strongly
depend on the viscoelastic layer.
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