LP and SOCP-based Approximations to SOS

(initially funded by AFOSR YIP)

Amir Ali Ahmadi
Princeton, ORFE
Affiliated member of PACM, COS, MAE, CSML
Optimization over nonnegative polynomials

Is \(p(x) \geq 0 \) on \(\{g_1(x) \geq 0, \ldots, g_m(x) \geq 0\} \)?

- **Optimization**
 - Lower bounds on polynomial optimization problems

 \[
 \min_x p(x) \\
 \text{s.t. } g_i(x) \geq 0
 \]

- **Statistics/ML**
 - Fitting a polynomial to data subject to shape constraints (e.g., convexity, or monotonicity)

 \[
 \frac{\partial p(x)}{\partial x_j} \geq 0, \forall x \in B
 \]

- **Control**
 - Stabilizing controllers

 \[
 \dot{x} = f(x)
 \]

 \[
 V(x) > 0, \\
 V(x) \leq \beta \Rightarrow \nabla V(x)^T f(x) < 0
 \]

 Implies that \(\{x \mid V(x) \leq \beta\} \) is in the region of attraction

[AAA, Curmei, Hall]
How to prove nonnegativity?

\[p(x) = x_1^4 - 6x_1^3x_2 + 2x_1^3x_3 + 6x_1^2x_2^2 + 9x_1^2x_2 - 6x_1x_2x_3 - 14x_1x_2x_3^2 + 4x_1x_3^3 + 5x_3^4 - 7x_2^2x_3^2 + 16x_2^4 \]

\[p(x) = (x_1^2 - 3x_1x_2 + x_1x_3 + 2x_3^2)^2 + (x_1x_3 - x_2x_3)^2 + (4x_2^2 - x_3^2)^2. \]

• Optimization over sum of squares (SOS) polynomials is a semidefinite program (SDP)!

• SDPs can be solved in poly-time to arbitrary accuracy.
Practical limitations of SOS

- **Scalability** is a nontrivial challenge!

A polynomial p of degree $2d$ is SOS if and only if $\exists Q \succeq 0$ such that

$$p(x) = z(x)^T Q z(x)$$

where $z = [1, x_1, ..., x_n, x_1 x_2, ..., x_n^d]^T$ is the vector of monomials of degree up to d.

- The size of the Gram matrix is:

$$\binom{n + d}{d} \times \binom{n + d}{d}$$

- Polynomial in n for fixed d, but grows quickly
 - The semidefinite constraint is expensive
- E.g., local stability analysis of a 20-state cubic vector field is typically an SDP with $\sim 1.2M$ decision variables and $\sim 200k$ constraints
Simple idea...

- Let’s not work with SOS...
- Give other sufficient conditions for nonnegativity that are perhaps stronger than SOS, but hopefully cheaper

Not any set inside SOS would work!

1) sums of 4th powers of polynomials
2) sums of 3 squares of polynomials

Both sets are clearly inside the SOS cone, but linear optimization over them is intractable.
dsos and sdsos polynomials (1/3)

Defn. A polynomial p is *diagonally-dominant-sum-of-squares (dsos)* if it can be written as:

$$p(x) = \sum_{i} \alpha_i m_i^2(x) + \sum_{i,j} \beta_{ij}^+(m_i(x) + m_j(x))^2 + \sum_{i,j} \beta_{ij}^-(m_i(x) - m_j(x))^2,$$

for some monomials m_i, m_j and some nonnegative constants $\alpha_i, \beta_{ij}^+, \beta_{ij}^-$.

Defn. A polynomial p is *scaled-diagonally-dominant-sum-of-squares (sdsos)* if it can be written as:

$$p(x) = \sum_{i} \alpha_i m_i^2(x) + \sum_{i,j} (\hat{\beta}_{ij}^+ m_i(x) + \hat{\beta}_{ij}^+ m_j(x))^2 + \sum_{i,j} (\hat{\beta}_{ij}^- m_i(x) - \hat{\beta}_{ij}^- m_j(x))^2,$$

for some monomials m_i, m_j and some constants $\alpha_i, \hat{\beta}_{ij}^+, \hat{\beta}_{ij}^+, \hat{\beta}_{ij}^-, \hat{\beta}_{ij}^-$ with $\alpha_i \geq 0$.

Note: $DSOS_{n,d} \subseteq SDSOS_{n,d} \subseteq SOS_{n,d} \subseteq POS_{n,d}$
<table>
<thead>
<tr>
<th>Sum of squares (sos)</th>
<th>$p(x) = z(x)^T Q z(x), Q \succeq 0$</th>
<th>SDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSD cone: ${Q \mid Q \succeq 0}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD cone: ${Q \mid Q_{ii} \geq \sum_{j \neq i}</td>
<td>Q_{ij}</td>
<td>, \forall i}$</td>
</tr>
<tr>
<td>SDD cone: ${Q \mid \exists$ diagonal D with $D_{ii} > 0$ s.t. $D Q D$ $dd}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Diagonally dominant sum of squares (dsos) | $p(x) = z(x)^T Q z(x), Q$ diagonally dominant (dd) | LP |

| Scaled diagonally dominant sum of squares (sdsos) | $p(x) = z(x)^T Q z(x), Q$ scaled diagonally dominant (sdd) | SOCP |
dsos and sdsos polynomials (3/3)

How to do better?
Method #1: \(r\text{-dsos} \) and \(r\text{-sdsos} \) polynomials (1/2)

Defn.

- A polynomial \(p \) is **\(r\text{-dsos} \)** if \(p(x) \cdot \left(\sum_i x_i^2 \right)^r \) is dsos.
- A polynomial \(p \) is **\(r\text{-sdsos} \)** if \(p(x) \cdot \left(\sum_i x_i^2 \right)^r \) is sdsos.

\[p(x_1, x_2) = x_1^4 + x_2^4 + ax_1^3 x_2 + (1 - \frac{1}{2}a - \frac{1}{2}b)x_1^2 x_2^2 + 2bx_1 x_2^3 \]

(a) The LP-based \(r\text{-dsos} \) hierarchy.
(b) The SOCP-based \(r\text{-sdsos} \) hierarchy.
Method #1: r-dsos and r-sdsos polynomials (2/2)

- r-dsos can outperform sos!

\[p(x) = x_1^4 x_2^2 + x_2^4 x_3^2 + x_3^4 x_1^2 - 3 x_1^2 x_2^2 x_3^2 \]

is 1-dsos but not sos.

Theorem: Any even positive definite form is r-dsos for some r.

- Even forms include *copositive programming (and all problems in NP).*

Theorem: Any form can be made even, while preserving positivity, by doubling the number of variables and degree.

- Leads to arbitrarily tight lower bounds on any polynomial optimization problem (with a compact feasible set).

[AAA, Hall, *Math of OR*] (2018 INFORMS Young Researchers Prize)
Method #2: dsos/sdsos + change of basis (1/2)

\[p(x) = x_1^4 - 6x_1^3x_2 + 2x_1^3x_3 + 6x_1^2x_2^2 + 9x_1^2x_2^2 - 6x_1^2x_2x_3 - 14x_1x_2x_3^2 + 4x_1x_3^3 + 5x_3^4 - 7x_2^2x_3^2 + 16x_2^4 \]

\[p(x) = z^T(x)Qz(x) \]

\[Q = \begin{pmatrix} 1 & -3 & 0 & 1 & 0 & 2 \\ -3 & 9 & 0 & -3 & 0 & -6 \\ 0 & 0 & 16 & 0 & 0 & -4 \\ 1 & -3 & 0 & 2 & -1 & 2 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 2 & -6 & 4 & 2 & 0 & 5 \end{pmatrix} \]

\[z(x) = (x_1^2, x_1x_2, x_2^2, x_1x_3, x_2x_3, x_3^2)^T \]

\[p(x) = \tilde{z}^T(x) \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix} \tilde{z}(x) \]

\[\tilde{z}(x) = \begin{pmatrix} 2x_1^2 - 6x_1x_2 + 2x_1x_3 + 2x_3^2 \\ x_1x_3 - x_2x_3 \\ x_2^2 - \frac{1}{4}x_3^2 \end{pmatrix} \]

Goal: iteratively improve \(z(x) \)

[AAA, Hall, *Contemporary Mathematics*]
Method #2: dsos/sdsos + change of basis (2/2)

\[\begin{align*}
\text{LP} & \quad \begin{bmatrix} \max \ l(\tilde{P}) \\ \tilde{P}, Q \end{bmatrix} \\
& \text{st. } P(x) = z^T(x)Qz(x) \forall x \\
& Q \text{ dd} \\
\rightarrow \text{Optimal soln. } C^*_Q \\
\rightarrow \text{Cholesky: } C^*_Q = U^T U \\
\text{LP}_+ & \quad \begin{bmatrix} \max \ l(\tilde{P}) \\ \tilde{P}, Q \end{bmatrix} \\
& \text{st. } P(x) = z^T(x)U^TQUz(x) \forall x \\
& Q \text{ dd} \\
\end{align*} \]

\[p_{a,b}(x_1, x_2) = 2x_1^4 + 2x_2^4 + ax_1^3x_2 + (1 - a)x_1^2x_2^2 + bx_1x_2^3 \]
Applications in control

(see paper for applications in statistics, finance, combinatorial and polynomial optimization)

Reminder

\[\dot{x} = f(x, u) \]

Stability of equilibrium points

\[V(x) > 0, \]
\[V(x) \leq \beta \Rightarrow \dot{V}(x) < 0 \]

implies \(\{ x \mid V(x) \leq \beta \} \) is in the region of attraction (ROA)
Stabilizing the inverted N-link pendulum (2N states)

Runtime:

<table>
<thead>
<tr>
<th>$2N$ (# states)</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSOS</td>
<td>< 1</td>
<td>0.72</td>
<td>6.72</td>
<td>7.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDSOS</td>
<td>< 1</td>
<td>3.97</td>
<td>156.9</td>
<td>1697.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOS (SeDuMi)</td>
<td>< 1</td>
<td>0.84</td>
<td>16.2</td>
<td>149.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOS (MOSEK)</td>
<td>< 1</td>
<td></td>
<td></td>
<td></td>
<td>23676.5</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1526.5</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

ROA volume ratio:

<table>
<thead>
<tr>
<th>$2N$ (states)</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho_{\text{dsos}}/\rho_{\text{sos}}$</td>
<td>0.38</td>
<td>0.45</td>
<td>0.13</td>
<td>0.12</td>
<td>0.09</td>
</tr>
<tr>
<td>$\rho_{\text{adsos}}/\rho_{\text{sos}}$</td>
<td>0.88</td>
<td>0.84</td>
<td>0.81</td>
<td>0.79</td>
<td>0.79</td>
</tr>
</tbody>
</table>

[Majumdar, AAA, Tedrake, CDC]
Stabilizing ATLAS

- 30 states
- 14 control inputs
- Cubic dynamics

Done by SDSOS Optimization

[Majumdar, AAA, Tedrake, CDC]

https://github.com/spot-toolbox/spotless
Real-time barrier certificates

Collision avoidance

\[
\begin{align*}
\dot{x} &= f(x) \\
(f: \mathbb{R}^n \rightarrow \mathbb{R}^n)
\end{align*}
\]

\[SV: \text{needs safety verification} \]

\[U: \text{unsafe (or forbidden) set} \]

\[V(x) < 0, \forall x \in S \]

\[V(x) > 0, \forall x \in U \]

\[\dot{V}(x) = \langle \nabla V(x), f(x) \rangle \leq 0 \]

SDOS run time: \textasciitilde ms

[AAA, Majumdar, Optimization Letters]
Take-away message

There is plenty of room inside the SOS cone!

- Trade-offs between the different approximations?
- What algorithm to use when? Can ML tell us?
- How to exploit sparsity, symmetry, etc. on top of this?
- Real-time implementations?

But we have a long way to go!

Want to know more? aaa.princeton.edu
Backup slides...
What can DSOS/SDSOS do in theory?

\[p(x) > 0, \forall x \in \{x \in \mathbb{R}^n \mid g_i(x) \geq 0, i = 1, \ldots, m\} \]

- Is there always an SOS proof?

 Yes, e.g. based on Putinar’s Psatz. (under a compactness assumption)

- Is there always an SDSOS proof?

- Is there always an DSOS proof?

 Yes! In fact, a much stronger statement is true.

If \(p(x) > 0, \forall x \in S, \) then \(p(x) = \sigma_0(x) + \sum_i \sigma_i(x)g_i(x), \) where \(\sigma_0, \sigma_i \) are sos
An optimization-free Positivstellensatz (1/2)

\[p(x) > 0, \forall x \in \{ x \in \mathbb{R}^n | g_i(x) \geq 0, i = 1, \ldots, m \} \]

\[2d = \text{maximum degree of } p, g_i \]

\[\iff \exists r \in \mathbb{N} \text{ such that} \]

\[\left(f(v^2 - w^2) - \frac{1}{r} \left(\sum_i (v_i^2 - w_i^2)^2 \right)^d + \frac{1}{2r} \left(\sum_i (v_i^4 + w_i^4)^d \right) \right) \cdot (\sum_i v_i^2 + \sum_i w_i^2)^{r^2} \]

is \textbf{nonnegative coefficients},

where \(f \) is a form in \(n + m + 3 \) variables and of degree \(4d \), which can be explicitly written from \(p, g_i \) and \(R \).

[AAA, Hall, Math of OR] (2018 INFORMS Young Researchers Prize)
An optimization-free Positivstellensatz (2/2)

\[p(x) > 0 \text{ on } \{ x \mid g_i(x) \geq 0 \} \iff \exists r \in \mathbb{N} \text{ s.t. } \left(f(v^2 - w^2) - \frac{1}{r} \left(\sum_i (v_i^2 - w_i^2)^2 \right)^d + \frac{1}{2r} \left(\sum_i (v_i^4 + w_i^4) \right)^d \right) \cdot (\sum_i v_i^2 + \sum_i w_i^2)^r \]

has \(\geq 0 \) coefficients

- \(p(x) > 0 \) on \(\{ x \mid g_i(x) \geq 0 \} \iff f \) is pd

- **Result by Polya (1928):**

 \(f \) even and pd \(\Rightarrow \) \(\exists r \in \mathbb{N} \) such that \(f(z) \cdot (\sum_i z_i^2)^r \) has nonnegative coefficients.

- Make \(f(z) \) even by considering \(f(v^2 - w^2) \). We lose positive definiteness of \(f \) with this transformation.

- Add the positive definite term \(\frac{1}{2r} \left(\sum_i (v_i^4 + w_i^4) \right)^d \) to \(f(v^2 - w^2) \) to make it positive definite. **Apply Polya’s result.**

- The term \(- \frac{1}{r} \left(\sum_i (v_i^2 - w_i^2)^2 \right)^d \) ensures that the converse holds as well.

As a corollary, gives LP/SOCP-based converging hierarchies...

(Even forms with nonnegative coefficients are trivially dsos.)