Learning sparse dynamics from limited measurements

Rachel Ward

February, 2019
Learning Governing Equations: Problem Set-up

- Unknown nonlinear dynamical system

\[\dot{x}(t) = f(x(t)), \quad \text{where } f : \mathbb{R}^d \rightarrow \mathbb{R}^d \text{ continuous.} \]

- Given: (possibly noisy or corrupted) limited snapshots of the system

\[x(t_1), \ldots, x(t_m), \quad t_m = m\Delta t \]

- Goal: Quickly recover governing equations \(f = (f_1, f_2, \ldots, f_d) \) from snapshots

- Problem is ill-posed without additional assumptions.
\[
\dot{x}(t) = f(x(t)), \quad \text{where } f : \mathbb{R}^d \to \mathbb{R}^d \text{ continuous.}
\]

- Reasonable assumption: Suppose \(f = (f_1, f_2, \ldots, f_d) \) are sparse, multivariate polynomials of maximal degree \(L \) to capture many dynamical systems of interest:

\[
f_k(x) = \sum_{\alpha_1 + \cdots + \alpha_d \leq L} c_{\alpha}^k x_{1}^{\alpha_1} x_{2}^{\alpha_2} \cdots x_{d}^{\alpha_d}
\]

- Goal is then to determine polynomial coefficients \(c_{\alpha}^k \) from data \(x(t_1), \ldots, x(t_m) \).

- Sparsity assumption: At most \(s \ll d^L \) among each set of coefficients \(\{c_{\alpha}^k\}, \quad k = 1, 2, \ldots, d \) are non-zero, we just don’t know which ones are nonzero.
“Lifting Trick” to linearize problem

Form data and (approximate) velocity matrices from given snapshots: \(^1\)

\[
\begin{align*}
X &= \begin{bmatrix}
X_1 & \cdots & X_d
\end{bmatrix} = \\
&= \begin{bmatrix}
x_1(t_1) & \cdots & x_d(t_1) \\
\vdots & \ddots & \vdots \\
x_1(t_m) & \cdots & x_d(t_m)
\end{bmatrix}_{m \times d}, \\
\dot{X} &= \begin{bmatrix}
\dot{X}_1 & \cdots & \dot{X}_d
\end{bmatrix}_{m \times d}
\end{align*}
\]

“Lifting Trick” to linearize problem

Form data and (approximate) velocity matrices from given snapshots: \(^1\)

\[
X = \begin{bmatrix}
X_1 & \cdots & X_d
\end{bmatrix} = \begin{bmatrix}
x_1(t_1) & \cdots & x_d(t_1)
\vdots & \ddots & \vdots
x_1(t_m) & \cdots & x_d(t_m)
\end{bmatrix}_{m \times d}, \quad \dot{X} = \begin{bmatrix}
\dot{X}_1 & \cdots & \dot{X}_d
\end{bmatrix}_{m \times d}
\]

Construct *dictionary matrix* from data:

\[
D_X = \begin{bmatrix}
1 & X_1 & \cdots & X_d & X_1^2 & X_1X_2 & \cdots & X_d^2 & \cdots
\end{bmatrix}_{m \times N}
\]

“Lifting Trick” to linearize problem

Form data and (approximate) velocity matrices from given snapshots: ¹

\[X = \begin{bmatrix} X_1 & \cdots & X_d \end{bmatrix} = \begin{bmatrix} x_1(t_1) & \cdots & x_d(t_1) \\ \vdots & \cdots & \vdots \\ x_1(t_m) & \cdots & x_d(t_m) \end{bmatrix}_{m \times d}, \quad \dot{X} = \begin{bmatrix} \dot{X}_1 & \cdots & \dot{X}_d \end{bmatrix}_{m \times d} \]

Construct *dictionary matrix* from data:

\[D_X = \begin{bmatrix} 1 & X_1 & \cdots & X_d & X_1^2 & X_1X_2 & \cdots & X_d^2 & \cdots \end{bmatrix}_{m \times N} \]

Recover \(C = [c_{\alpha}^1, c_{\alpha}^2, \ldots, c_{\alpha}^d]_{|\alpha| \leq L} \in \mathbb{R}^{N \times d} \) as solution to the *linear inverse problem*

\[\dot{X} = D_X C \quad \text{or} \quad \dot{X} = D_X C + \mathcal{E} \]

where \(\mathcal{E} \) is error in time-derivative approximations and \(\| \cdot \| \) is the max of column \(\ell_2 \) norms.

Algorithm for sparse reconstruction

We are interested in recovering \mathcal{C} from \dot{X} and D_X when number of measurements m is limited — $D_X \in \mathbb{R}^{m \times N}$ is underdetermined. Natural optimization algorithm to pick sparsest solution consistent with measurements:

$$\min_{\mathcal{Z}} \|\mathcal{Z}\|_0, \quad \text{s.t} \quad \|\dot{X} - D_X \mathcal{Z}\| \leq \sigma$$
Algorithm for sparse reconstruction

We are interested in recovering C from \dot{X} and D_X when number of measurements m is limited — $D_X \in \mathbb{R}^{m \times N}$ is underdetermined. Natural optimization algorithm to pick sparsest solution consistent with measurements:

$$\min_{\mathcal{Z}} \|\mathcal{Z}\|_0, \quad \text{s.t} \quad \|\dot{X} - D_X \mathcal{Z}\| \leq \sigma$$

The sparse optimization algorithm above is NP hard, so relax to an L_1 algorithm (convex, called Basis Pursuit):

$$\min_{\mathcal{Z}} \|\mathcal{Z}\|_1, \quad \text{s.t} \quad \|\dot{X} - D_X \mathcal{Z}\| \leq \sigma$$
Algorithm for sparse reconstruction

We are interested in recovering \(C \) from \(\dot{X} \) and \(D_X \) when number of measurements \(m \) is limited — \(D_X \in \mathbb{R}^{m \times N} \) is underdetermined. Natural optimization algorithm to pick sparsest solution consistent with measurements:

\[
\min_{\mathcal{Z}} \|\mathcal{Z}\|_0, \quad \text{s.t} \quad \|\dot{X} - D_X \mathcal{Z}\| \leq \sigma
\]

The sparse optimization algorithm above is NP hard, so relax to an \(L_1 \) algorithm (convex, called Basis Pursuit):

\[
\min_{\mathcal{Z}} \|\mathcal{Z}\|_1, \quad \text{s.t} \quad \|\dot{X} - D_X \mathcal{Z}\| \leq \sigma
\]

Approach: Random initialization, apply results from compressive sensing:
Properties of \(D_X \) such that in the range \(m \ll N \), the solutions of the two problems agree, or are close.
Sparse Recovery from Multiple Trajectories

- Suppose we can collect snapshots from K different trajectories:
 \[
 \{x(t_1, 1), \ldots, x(t_m, 1)\}, \quad \{x(t_1, K), \ldots, x(t_m, K)\},
 \]

- Form \dot{X} and dictionary matrix D_X of size $mK \times N$ and solve for C.

Theorem (Schaefer, Tran, and W. 2017)

Assume each component of $f(x) = (f_1(x), \ldots, f_d(x))$ is a multivariate polynomial of maximal order L, and has at most s non-zero polynomial coefficients – call this coefficient matrix C. Assume the K initializations $\{x(t_1, 1), \ldots, x(t_1, K)\}$ are drawn i.i.d. uniformly from $[1, 1]^d$; and that $K \geq 3Ls \log(d) \log(\epsilon^{-1})$.

Then with probability $1 - \epsilon$, C is the unique solution to the ℓ_1-minimization problem:

\[
\min_k \|Z\|_1 \quad \text{subject to} \quad \dot{X} = D_X Z,
\]

and recovery is stable with respect to inexact sparsity and robust with respect to additive noise (as from approximating derivatives).
Sparse Recovery from Multiple Trajectories

- Suppose we can collect snapshots from K different trajectories:

$$\{\mathbf{x}(t_1, 1), \ldots, \mathbf{x}(t_m, 1)\}, \quad \{\mathbf{x}(t_1, K), \ldots, \mathbf{x}(t_m, K)\},$$

- Form $\dot{\mathbf{X}}$ and dictionary matrix D_X of size $mK \times N$ and solve for C.

Theorem (Schaeffer, Tran, and W. 2017)

Assume each component of $f(\mathbf{x}) = (f_1(\mathbf{x}), \ldots, f_d(\mathbf{x}))$ is a multivariate polynomial of maximal order L, and has at most s non-zero polynomial coefficients – call this coefficient matrix C. Assume the K initializations $\{\mathbf{x}(t_1, 1), \ldots, \mathbf{x}(t_1, K)\}$ are drawn i.i.d. uniformly from $[-1, 1]^d$; and that $K \geq c 3^L s \log(d) \log(\varepsilon^{-1})$.

Sparse Recovery from Multiple Trajectories

- Suppose we can collect snapshots from \(K \) different trajectories:

\[
\{x(t_1, 1), \ldots, x(t_m, 1)\}, \quad \{x(t_1, K), \ldots, x(t_m, K)\},
\]

- Form \(\dot{X} \) and dictionary matrix \(D_X \) of size \(mK \times N \) and solve for \(C \).

Theorem (Schaeffer, Tran, and W. 2017)

Assume each component of \(f(x) = (f_1(x), \ldots, f_d(x)) \) is a multivariate polynomial of maximal order \(L \), and has at most \(s \) non-zero polynomial coefficients – call this coefficient matrix \(C \). Assume the \(K \) initializations \(\{x(t_1, 1), \ldots, x(t_1, K)\} \) are drawn i.i.d. uniformly from \([−1, 1]^d\); and that \(K \geq c 3^L s \log(d) \log(\varepsilon^{-1}) \).

Then with probability \(1 − \varepsilon \), \(C \) is the unique solution to the \(\ell_1 \)-minimization problem:

\[
\min \| Z \|_1 \quad \text{subject to} \quad \dot{X} = D_X Z,
\]

and recovery is stable with respect to inexact sparsity and robust with respect to additive noise (as from approximating derivatives).
Sparse Recovery from Multiple Trajectories

- Reconstruction guarantees can be extended to sparsity with respect to other bounded orthonormal bases such as sines and cosines, but not to an arbitrary dictionary (incoherence required).

- Our recovery guarantee uses only the initial measurements from each burst; later measurements used only the approximate \(\dot{x}(t_1, \ell) \). Compressive sensing guarantees require randomness/ Central Limit Theorems for sampling points.

- [Tran, Ward 2016] If \(\{x(t_1), \ldots, x(t_m)\} \) is sufficiently ergodic, then the iterates act similar to i.i.d. sampling points (central limit theorem), and one can derive guarantees using measurements from a single trajectory.

- Can we steer the system towards an ergodic trajectory to reduce number of measurements?