On Local Minimality in Cubic Optimization

Jeffrey Zhang
Princeton, ORFE
(Joint work with Amir Ali Ahmadi, Princeton)

MURI Austin
August 2019
Deciding Local Minimality

Consider the optimization problem

\[
\inf_{x \in \mathbb{R}^n} f(x)
\]

s.t. \(x \in \Omega \)

Given a point \(\bar{x} \), decide if \(\bar{x} \) is a local minimizer of \(f \).

Why local minima?

- Global minima are often intractable
- Recent interest in local minima, particularly in machine learning applications
- Existing notions that local minima are “easier” to find or are “sufficient for applications”
- Formal understanding of local minima is desirable
- Polynomial optimization gives a rigorous framework for analyzing complexity
Our focus: polynomial optimization problems

\[
\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad f(x) \\
\text{s.t.} & \quad g_i(x) \geq 0, \quad i = 1, \ldots, m
\end{align*}
\]

Deciding local minimality of a given point?

Known polynomial-time cases
- Unconstrained quadratics
- Linear programming

Known NP-hard cases
- Unconstrained quartics
 - Murty, Kabadi (1987)
- Quadratic programming
 - Pardalos, Schnitger (1988)

One open case
- Unconstrained cubics
Theorem (Ahmadi, Zhang)

Let f be a cubic polynomial. A point \(\hat{x} \) is a local minimizer of f if and only if \(\hat{x} \) satisfies

- \(\nabla f(\hat{x}) = 0 \)
- \(\nabla^2 f(\hat{x}) \succeq 0 \)
- \(d^T \nabla^2 f(\hat{x}) d = 0 \Rightarrow \nabla f_3(d) = 0 \)
Example: no local minimum

\[f(x, y) = y(y - x^2) \]

\[\nabla f(0,0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \nabla^2 f(0,0) = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix} \]

\[d^T \nabla^2 f(0,0) d = 0 \Rightarrow \nabla f_3(d) = 0? \]
Example: local minimum

\[f(x, y) = y(y - x^2) \]

\[\nabla f(0,0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

\[\nabla^2 f(0,0) = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix} \]

\[d^T \nabla^2 f(0,0)d = 0 \Rightarrow \nabla f_3(d) = 0? \]
Checking local minimality in polynomial time

Theorem (Ahmadi, Zhang)

Let f be a cubic polynomial. Checking whether a point \hat{x} is a local minimizer of f can be done in polynomial time.

- Compute Hessian of f at \hat{x} and check that it is psd
- Compute a basis v_1, v_2, \ldots for the null space of Hessian (e.g. Bareiss)
- Compute $\nabla f_3(\sum a_i v_i)$ and check that all entries are zero

Some geometric properties of local minima

- The set of x where its Hessian is PSD is convex and semidefinite representable
- The local minimizers of cubics form a convex set
SDP for finding local minima

Theorem (Ahmadi, Zhang)

Let f be a cubic polynomial that has a local minimum. Then the optimal value of the following SDP is the value of the local minimum:

$$\max_{\sigma(x) \text{sos}, S(x) \text{sos}} \gamma$$

$$f - \gamma = \sigma + Tr(\nabla^2 f(x)S(x))$$

$$\min_{H(x) \succeq 0} f(x)$$

$$sos \text{ relaxation}$$

$$(x - \hat{x})^T \nabla^2 f(\hat{x})(x - \hat{x}) \quad (x - \hat{x})(x - \hat{x})^T$$

There is always a *quadratic* σ and a quadratic sos-matrix S such that this holds!
Future questions

• Is deciding if a cubic polynomial has a local minimum in P?
 – Difficulties: irrational numbers, sizes of minima

• Are local minima of cubics polynomially sized?
 – Implications: Deciding if there is a local minimum is in P, and finding them is tractable