
1 
 

Swell induced surface instability of confined hydrogel layers on substrates 

Min Kyoo Kang and Rui Huang* 

Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, 

TX 78712 

 

ABSTRACT 

In response to external stimuli, polymeric hydrogels can change volume and shape dramatically. 

Experimental studies have observed a variety of instability patterns of hydrogels, due to swelling 

or shrinking, many of which have not been well understood. The present paper considers swell 

induced surface instability of a hydrogel layer on a rigid substrate. Based on a recently developed 

theoretical framework for neutral polymeric gels, a linear perturbation analysis is performed to 

predict the critical condition for onset of the surface instability. Using a nonlinear finite element 

method, numerical simulations are presented to show the swelling process, with evolution of 

initial surface perturbations followed by formation of crease-like surface patterns. In contrast to 

previously suggested critical conditions for surface creasing, the present study suggests a 

material specific condition that predicts a range of critical swelling ratios from about 2.5 to 3.4 

and quantitatively relates the critical condition to material properties of the hydrogel system. A 

stability diagram is constructed with two distinct regions for stable and unstable hydrogels 

depending on two dimensionless material parameters. 
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1. Introduction 

 Containing a high fraction of water, hydrogels are often found as structural materials and 

actuators in natural systems such as jelly fish and human tissues (Calvert, 2008). Synthetic gels 

are common ingredients in foods, cosmetics, and pharmaceuticals. Driven by typically large and 

reversible deformation of hydrogels in response to external stimuli (e.g., temperature, pH, 

electrical field), a wide range of applications have been demonstrated recently, including drug 

delivery (Peppas et al., 2006), tissue engineering (Uljin et al., 2007), micro-sensors and actuators 

(Beebe et al., 2000; Dong et al., 2006; Sidorenko et al., 2007). 

Experimental studies have shown complex material behaviors of gels (Li and Tanaka, 

1992; Tokarev and Minko, 2009). Subject to geometric confinement and/or mechanical 

constraint, a variety of instability patterns have been observed in gel-like materials (Southern and 

Thomas, 1965; Tanaka et al., 1987; Matsuo and Tanaka, 1992; Tirumala et al., 2005; Mora and 

Boudaoud, 2006; Sultan and Boudaoud, 2008; Trujillo et al., 2008; Zhang et al., 2008). Of 

particular interest, surface wrinkling of swollen rubber vulcanizates was observed by Southern 

and Thomas (1965), who reported a critical swelling ratio of about 2.5 due to the effect of 

substrate constraint. Later, a wide range of critical swelling ratios were observed for different gel 

systems, between 2.46 and 3.72 by H. Tanaka et al. (1992) and around 2 by Trujillo et al. (2008). 

T. Tanaka et al. (1987) found that many gels formed surface patterns during swelling process, 

and they suggested a critical osmotic pressure for the surface instability, although their analysis 

implied a critical compressive stress. More recently, Trujillo et al. (2008) showed that the critical 

condition for surface creasing in their experiments with a model hydrogel system agreed well 

with the prediction by a linear perturbation analysis for rubber under equi-biaxial compression 

(Biot, 1963), with a critical linear compressive strain ~33% relative to the state of free swelling 
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for unconstrained hydrogels. On the other hand, Gent and Cho (1999) found that Biot’s 

prediction considerably overestimated the critical strain for surface creasing in their experiments 

with rubbers compressed by mechanical bending. A recent work by Hong et al. (2009B) argued 

that surface creasing is a different mode of surface instability in contrast with Biot’s linear 

perturbation analysis, and they predicted a critical swelling ratio at 2.4 for surface creasing of 

gels based on an energetic consideration and numerical calculations for neo-Hookean elastomers. 

It remains elusive how the critical swelling ratio varies from around 2 to 3.72 in experiments. In 

the present study, we extend Biot’s linear perturbation analysis to swelling deformation of a 

hydrogel layer confined by a rigid substrate. The predicted critical swelling ratio varies from 

about 2.5 to 3.4, depending on the material parameters of the hydrogel. Using a nonlinear finite 

element method, we show by numerical simulations that an initial surface perturbation can 

evolve to form surface creases as a post-instability phenomenon. 

The remainder of this paper is organized as follows. Section 2 briefly reviews a recently 

developed nonlinear theory for polymeric gels. Section 3 presents an analytical solution for 

homogeneous swelling of hydrogel layers laterally constrained by a rigid substrate. A linear 

perturbation analysis is performed in Section 4, which leads to an eigenvalue problem and 

predicts the critical condition for onset of surface instability. Section 5 presents numerical 

simulations with a nonlinear finite element method, showing formation of surface creases. 

Concluding remarks are given in Section 6. 

 

2. A nonlinear theory for hydrogels 

Consider a hydrogel immersed in a solvent (Fig. 1). A nonlinear theory has been 

developed previously for swelling deformation of neutral polymer gels (Hong et al., 2008 and 
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2009A; Kang and Huang, 2009). Regardless of the transport kinetics, deformation of the 

hydrogel eventually reaches an equilibrium state when both the chemical potential and the 

mechanical stress satisfy the equilibrium condition. The chemical equilibrium requires that the 

chemical potential inside the gel be a constant and equal to the chemical potential of the external 

solvent ( μμ ˆ= ). In addition, the mechanical equilibrium requires that  

0=+
∂
∂

i
J

iJ B
X
s   in Ω0,      (2.1) 

and 

0== iiJiJ xTNs δor       on Γ0,     (2.2) 

where siJ is the nominal stress, Bi and Ti are the nominal body force and surface traction, Ω0 and 

Γ0 are the volume and the surface of the hydrogel at the reference state, NJ is the unit vector in 

the outward normal direction of the surface, XJ and xi are the particle coordinates at the reference 

and the current states, respectively, and they are related to each other through the deformation 

gradient tensor, JiiJ dXdxF /= . For the present study, the reference state is taken to be the 

undeformed dry state of the polymer network, and the body force is considered negligible. 

The chemical potential of the external solvent ( μ̂ ) in general depends on the 

temperature (T) and pressure (p). Assuming an ideal gas phase (p < p0) and an incompressible 

liquid phase (p > p0) for the solvent, the chemical potential is given by 
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where p0 is the equilibrium vapor pressure and depends on the temperature, v is the volume per 

solvent molecule, and kB is the Boltzmann constant. At the equilibrium vapor pressure (p = p0), 

the external chemical potential 0ˆ =μ . For water at 25ºC, 2.3~0p kPa and v ~ 3×10-29 m3, the 
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chemical potential is about 0.0007kBT under the atmospheric pressure (~101 kPa). In a vacuum 

(p = 0), −∞=μ̂ . 

The constitutive behavior of the hydrogel can be described by using a free energy 

function U, which in general depends on both the elastic deformation of the polymer network 

and the concentration of solvent molecules inside the gel. The nominal stress in the gel is then 

iJ
iJ F

Us
∂
∂

= .       (2.4) 

To be specific, we adopt a free energy density function that consists of two separate parts, one for 

elastic deformation of polymer network and the other for mixing of solvent molecules with the 

polymer, namely  

)()(),( CUUCU me += FF .     (2.5) 

where 
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and I = FiJFiJ, ( )Fdet=J , C is the nominal concentration (number per volume) of solvent 

molecules, N is the effective number of polymer chains per unit volume of the hydrogel at the 

dry state, and χ is a dimensionless quantity characterizing the interaction energy between the 

solvent molecules and the polymer. Therefore, the material properties of the hydrogel system is 

fully determined by three parameters: NkBT, kBT/v, and χ, the first of which is simply the initial 

shear modulus of the polymer network. 

The elastic free energy density function (Ue) in Eq. (2.6) is similar to that obtained by 

Flory (1953) based on a statistical mechanics model, but is slightly different as suggested in the 



6 
 

previous works (Hong et al., 2008; Kang and Huang, 2009). The free energy of mixing (Um) in 

Eq. (2.7) is derived exactly from the Flory-Huggins polymer solution theory (Huggins, 1941; 

Flory, 1953), with the assumption of molecular incompressibility inside the gel, namely, the total 

volume of the hydrogel is the sum of the volume of the dry polymer network and the solvent 

molecules so that 

vCJ += 1 .      (2.8) 

 At the equilibrium state of swelling, the chemical potential inside the hydrogel is a 

constant while the concentration field can be inhomogeneous. Thus, it is convenient to write the 

free energy function in terms of the chemical potential via a Legendre transformation (Hong et 

al., 2009A), namely 

( ) CCUU μμ ˆ,)ˆ,(ˆ −= FF
 
.     (2.9) 

It then follows that, by Eqs. (2.4)-(2.8) 
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3. Homogeneous swelling of a confined hydrogel layer 

 Now consider a hydrogel layer attached to a rigid substrate (Fig. 2a). Due to the 

confinement of the substrate, the hydrogel layer swells only in the thickness direction. Let 1 

and 3 denote the in-plane directions and 2 the out-of-plane (thickness) direction. For 



7 
 

homogeneous swelling, the deformation gradient tensor is diagonal, with the principal 

stretches, hF λ=22  and 13311 == FF . The volume swelling ratio is simply, hhJ λ= , and the 

nominal concentration of solvent molecule in the hydrogel is  

v
C h

h
1−

=
λ

.       (3.1) 

Upon swelling, the free energy density inside the hydrogel becomes 

( ) ( ) ( )hmhehh CUUU += λλ ,     (3.2) 

where, by Eqs. (2.6) and (2.7), 
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The total free energy of the system (including the hydrogel and the external solvent) 

consists of the internal free energy and the chemical/mechanical work done during absorption 

and swelling, namely 
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where V0 is the reference volume of the layer at the dry state. Note that the external solvent 

exerts a pressure p onto the surface of the hydrogel layer, which does a negative work and thus 

increases the free energy as the hydrogel swells.  

The equilibrium swelling ratio of the hydrogel can then be determined by minimizing 

the total free energy. Setting 0/ =hddG λ  leads to 
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Solving Eq. (3.6) gives the homogeneous swelling ratio λh for a specific hydrogel system as a 

function of the external chemical potential ( μ̂ ), which in turn is a function of the temperature 

and pressure. By the definition of the chemical potential in Eq. (2.3), we note that, if the external 

solvent is in a liquid phase (i.e., p > p0), the right hand side of Eq. (3.6) is independent of the 

pressure p and thus the homogeneous swelling ratio depends on the temperature only, while this 

is not the case if p < p0 (a gas phase). In the previous studies (Hong et al., 2009A; Kang and 

Huang, 2009), a similar solution was obtained by using a Lagrange multiplier, but the effect of 

the external pressure was ignored. Figure 3 plots the homogeneous swelling ratio as a function of 

the chemical potential, comparing the present solution to the previous solution. In addition to the 

two dimensionless material parameters (Nv and χ) for the hydrogel, the present solution depends 

on the normalized equilibrium vapor pressure, )/(00 Tkvpp B= , which is a function of the 

temperature for a specific solvent. At a constant temperature, the hydrogel swells increasingly as 

the chemical potential increases until the pressure reaches the equilibrium vapor pressure 

( 0pp =  and 0=μ ). For a typical value of the equilibrium vapor pressure (e.g., for water at 

25ºC, 5
0 103.2~ −×p ), the difference between the two solutions is negligible when 0≤μ  or 

0pp ≤ . However, when p > p0, the previous solution predicts that the swelling ratio continues to 

increase as the chemical potential or pressure increases, while the present solution predicts a 

constant swelling ratio independent of the chemical potential or pressure. Consequently, given 

the material parameters for a hydrogel system (Nv and χ), the maximum degree of homogeneous 

swelling occurs at the equilibrium vapor pressure ( 0=μ ). Also plotted in Fig. 3 is the 

homogeneous swelling ratio for an artificially large equilibrium vapor pressure ( 01.00 =p ), to 

illustrate the effect of solvent vapor pressure on the swelling ratio, i.e., λh decreases as 0p  
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increases. Similar effect can be predicted for swelling of unconstrained hydrogels. 

 The lateral confinement by the substrate induces a compressive stress in the swollen 

hydrogel layer. By Eq. (2.10) and Eq. (3.6), we obtain that 

( ) iJiJhiJBiJ pHHFTNks −−= λ .     (3.7) 

It then follows that 

( ) hhBh pTNksss λλ −−−=== 12
3311 ,    (3.8) 

and ps −=22 , while all other stress components are zero. The solution for the nominal stress 

differs slightly from the previous studies (Hong et al., 2009A; Kang and Huang, 2009) due to the 

effect of the external pressure. 

The true (Cauchy) stresses at the current state are related to the nominal stresses as 

( ) pTNks hhBhh −−−=== λλλσσ /1/3311  and ps −== 2222σ . The hydrostatic pressure inside 

the hydrogel layer is thus 

pTNkp
h

hBin +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=++−=
λ

λσσσ 1
3
2)(

3
1

332211 .  (3.9) 

The difference between the internal pressure of the gel and the external pressure of the solvent 

defines an osmotic pressure, namely 
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4. Linear perturbation analysis 

To examine stability of the homogeneous swelling deformation of the confined hydrogel 

layer, we assume a small perturbation with displacements from the swollen state in both the 

thickness and lateral directions (Fig. 2b), namely 
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( )2111 , xxuu =  and ( )2122 , xxuu = .    (4.1) 

In the spirit of linear perturbation analysis similar to that by Biot (1963), along with the 

transverse isotropy of the homogeneous solution, the two-dimensional perturbation is sufficient 

to represent an arbitrary perturbation in three dimensions. 

The deformation gradient after the perturbation becomes  
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Thus, the volume ratio of swelling (relative to the dry state) is 
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where 
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∂
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+
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∂

=ε  is the linear volumetric strain relative to the homogeneously swollen state, 

and only the first-order terms of the perturbation are retained for the linear analysis. As a result, 

the concentration field in the hydrogel becomes inhomogeneous, namely 

ελhhvCJvC +≈−= 1 .      (4.4) 

By substituting Eq. (4.2) into Eq. (2.10), we obtain the nominal stresses after the 

perturbation 

( )[ ] iJiJhhiJBiJ HpHFTNks ~~~ −−−≈ εξλ ,    (4.5) 
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Expanding Eq. (4.5) gives the stress components explicitly as follows: 
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and 031133223 ==== ssss . Apparently, the linearized stress-strain relationship for the hydrogel 

layer becomes anisotropic due to the anisotropic swelling deformation before perturbation. 

By substituting the stress components into the equilibrium equations (2.1) and setting the 

body force 0=iB , we obtain that 
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Applying Fourier transform with respect to x1 in Eqs. (4.12) and (4.13), we obtain that 
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where 1−=i , ( )kxu ;ˆ 21  and ( )kxu ;ˆ 22  are the Fourier transforms of ( )211 , xxu  and 
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( )212 , xxu  with the wave number k in the x1 direction. 

The general solution to Eqs. (4.14) and (4.15) takes the form 

( )211 expˆ qxuu =  and
 

( )222 expˆ qxuu = .   (4.16) 

Substitution of (4.16) into Eqs. (4.14) and (4.15) leads to an eigenvalue problem 
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for which the eigenvalues are solved from the characteristic equation 
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or equivalently, 

( ) ( ) ( ) 012 422243 =++++−+ kqkq hhhhhhhhhh ξλλξλλξλξλ .  (4.20) 

Solving Eq. (4.20), we obtain four eigenvalues 

h

kq
λ

±=2,1  and βkq ±=4,3 ,     (4.21) 

where 
hhh

hh

ξλλ
ξλβ

+
+

= 2

1 . There exist two sets of degenerated solutions to the eigenvalue problem, 

when 0=hξ  or 1−=hhξλ , as given in the Appendix. They have no substantial effect on the 

stability analysis that follows. 

For each eigenvalue, qn (n = 1 - 4), an eigenvector, ( ))(
2
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where, except for the degenerated cases, 
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The perturbation displacement can then be obtained by inverse Fourier transform of Eqs. (4.22) 

and (4.23), which may be considered as superposition of many Fourier components. For each 

Fourier component with a specific wave number k, the displacement is periodic in the x1 

direction, but varies exponentially in the x2 direction for each eigen mode, similar to Biot’s 

analysis for surface instability of a half-space rubber-like medium under compression (Biot, 

1963), but in contrast with the sinusoidal variation assumed by Tanaka et al. (1987). 

For each wave number k, the amplitudes for the four eigen modes (An, n = 1 - 4) are 

obtained by applying the boundary conditions. The lower surface of the hydrogel layer is 

attached to the rigid substrate with zero displacement, i.e., 

00 221 === xuu at     .     (4.25) 

The upper surface of the hydrogel is subjected to a normal traction due to the pressure of external 

solvent. To the first order of perturbation, the nominal magnitude of the traction at the perturbed 

state is 
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and the direction is perpendicular to the perturbed surface with the unit vector, 
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Therefore, by Eq. (2.2) and to the first order of perturbation, the traction boundary condition at 
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the upper surface is 
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where 0hh hλ=  is the thickness of the hydrogel layer at the swollen state (before perturbation) 

and h0 is the dry-state thickness. 

Substituting Eqs. (4.22) and (4.23) into Eqs. (4.8) and (4.10) and then applying the 

boundary conditions in (4.25) and (4.28), we obtain that 
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Re-write Eqs. (4.26)-(4.29) in a matrix form as 
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where the coefficient matrix is given by 
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The homogeneous swelling deformation of the hydrogel layer becomes unstable when 
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Eq. (4.33) yields nontrivial solutions for the amplitudes, An (n = 1 - 4). The critical condition for 

onset of the instability is thus predicted by setting the determinant of the matrix D to be zero, 

namely 

[ ] ( ) 0,;,det 0 == χλ NvkhfD hmn .     (4.35) 

For each kh0, Eq. (4.35) predicts a critical swelling ratio, ( )χλ ,;0 Nvkhc , which depends on the 

perturbation wave number kh0 as well as the two material parameters (Nv and χ) of the hydrogel. 

The corresponding critical chemical potential (µc) can then be determined from the homogeneous 

solution, Eq. (3.6).  

 Figure 4a plots the predicted critical swelling ratio as a function of kh0, and Figure 4b 

plots the critical chemical potential, for 5
0 103.2 −×=p , 001.0=Nv , and different values of χ . 

Unlike the critical compression for surface instability of a semi-infinite rubber, which is 

independent of the perturbation wavelength (Biot, 1963), the critical swelling ratio for swell 

induced surface instability of a hydrogel layer depends on the normalized perturbation wave 

number, kh0, due to the presence of a rigid substrate. The substrate confinement tends to stabilize 

long-wavelength perturbations (with small kh0), while the confinement effect diminishes for 

short-wavelength perturbations (with large kh0). Consequently, the critical swelling ratio 

decreases as kh0 increases and approaches a constant at the limit of short-wavelength 

perturbations ( ∞→0kh ). Therefore, the onset of swell-induced surface instability is controlled 

by the minimum critical swelling ratio at the short-wavelength limit. It is speculated that surface 

effects (e.g., surface energy, surface stress), while not considered in the present study, could 

potentially stabilize short-wavelength perturbations and, together with the substrate confinement 

effect, could lead to an intermediate wavelength for onset of the surface instability. 

We note in Fig. 4 that, for 6.0≤χ , there exists a critical wave number, for which the 
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critical swelling ratio equals the maximum homogeneous swelling ratio and the corresponding 

critical chemical potential equals zero. For smaller perturbation wave numbers, the hydrogel 

layer remains stable at the equilibrium chemical potential ( 0ˆ == μμ ). For 6.0>χ , however, 

we find that the hydrogel layer remains stable for all possible perturbation wave numbers; thus 

no critical condition is predicted. As shown later (Fig. 6), for each Nv, there exists a critical value 

for χ , beyond which the hydrogel layer is stable and swells homogeneously at the equilibrium 

state.  

Next we focus our attention on the critical condition at the short-wavelength limit. By 

letting kh0 → ∞ in Eq. (4.34) and setting the determinant of the matrix to be zero, we obtain that 

( ) ( ) 041,;
2

=−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=∞ hh

h
hh Nvf λββλ

λ
λχλ .   (4.36) 

It can be shown that 0≠− hλβ  for all swelling hydrogels ( 1>hλ ). Thus, the critical condition 

becomes 

041
2

=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ βλ
λ

λ h
h

h .     (4.37) 

Combining this with the definition of β  in (4.21) and ξh in (4.6) gives a nonlinear equation, 

which can be solved to predict the critical swelling ratio at the short-wavelength limit, 

( )χλ ,Nvc
∞ . The corresponding critical chemical potential, ( )0,, pNvc χμ∞ , is calculated from Eq. 

(3.6) by setting ( )χλλ ,Nvch
∞= .  

Figure 5a plots the predicted critical swelling ratio ( ∞
cλ ) as a function of Nv for different 

values of χ, and Fig. 5b plots the critical chemical potential ( ∞
cμ ), assuming a constant 

equilibrium vapor pressure ( 5
0 103.2 −×=p ). The dashed lines in Fig. 5a show the maximum 
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homogeneous swelling ratio predicted by Eq. (3.6). For each χ, the critical chemical potential 

increases monotonically with increasing Nv until it reaches the equilibrium chemical potential 

( 0=∞
cμ ), at which point the critical swelling ratio equals the maximum homogeneous swell ratio. 

Therefore, the stability of the homogeneously swollen hydrogel layer depends on both Nv and χ. 

The two dimensionless material parameters characterize the elastic stiffness of the polymer 

network and the polymer-solvent interaction, respectively. While the polymer stiffness increases 

with Nv, the network tends to swell more significantly in a good solvent (low χ) than in a poor 

solvent (high χ). The interplay between the two parameters is summarized in a diagram (Fig. 6) 

with two distinct regions for stable and unstable hydrogels. The boundary line separating the two 

regions is determined by setting 0=∞
cμ  or ( ) ( )hc Nv λχλ max, =∞  in Eq. (4.37). The range of 

Nv in Fig. 6 roughly corresponds to a range between 1 kPa and 10 MPa for the initial shear 

modulus (NkBT) of the polymer network at 25ºC, which is typical for hydrogels and elastomers. 

For a hydrogel layer with properties in the upper-right region of the diagram (stiff network, poor 

solvent), it swells homogeneously and remains stable at the equilibrium chemical potential 

( 0=μ ). The homogeneous swelling ratio is typically small ( 3<hλ ) in this region. For a 

hydrogel layer with properties in the lower-left region (soft network, good solvent), surface 

instability occurs at a critical swelling ratio (Fig. 5a) before it reaches the maximum 

homogeneous swelling ratio. The predicted critical swelling ratio, ranging between 2.5 and 3.4, 

depends on both Nv and χ.  

We note that, when Nv is relatively small (< 10-4), the critical swelling ratio (Fig. 5a) is 

nearly a constant (~3.4) independent of Nv or χ, and the critical value of χ that separates the 

unstable and stable regions in Fig. 6 is nearly independent of Nv. On the other hand, the critical 
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chemical potential (Fig. 5b), nearly independent of Nv, increases with increasing χ. These results 

may be understood intuitively by considering the limiting case when the contribution of elasticity 

is negligible ( 0→Nv ) for both the homogeneous swelling and the stability analysis. In this case, 

the competition between the entropy of mixing and the enthalpy of solvent-polymer interaction 

dominates the swelling process. Consequently, the stability of the hydrogel layer depends on χ 

only. As 0→Nv , ∞→hξ  and 1→β . Solving Eq. (4.37) gives a nontrivial solution for the 

constant critical swelling ratio, 38.3=cλ . By Eq. (3.6), the critical chemical potential is 

approximately 

0549.00875.0 −≈ χμ
TkB

c .    (4.38) 

Setting 0=cμ
 
in Eq. (4.38), we obtain that 63.0=cχ . This critical value of χ is slightly 

higher than the critical value that was used to define a good solvent (χ < 0.5) for swelling 

polymer networks (Li and Tanaka, 1992).  

Previously, Tanaka et al. (1987) suggested a critical osmotic pressure above which 

distinct surface instability patterns appear in swelling gel slabs. As defined in Eq. (3.10), the 

osmotic pressure can be determined from the homogeneous swelling ratio. However, their 

theoretical analysis assumed inhomogeneous swelling of the gel slab even before the onset of 

instability and the predicted critical pressure depends on variation of the elastic modulus at the 

swollen state, which cannot be readily evaluated for quantitative comparisons. It has also been 

suggested that the compressive stress developed in the swollen hydrogel is the driving force for 

surface instability of confined hydrogel layers (Trujillo et al., 2008). Based on the 

homogeneous solution in Section 3, the critical compressive stress is obtained as 
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Using the critical swelling ratio and the critical chemical potential in Fig. 5, we plot the critical 

compressive stress as a function of Nv in Fig. 7a. For comparison, the dashed lines show the 

compressive stress at the maximum homogeneous swelling ratio. Again, the critical 

compressive stress in general depends on both Nv and χ. When Nv < 10-4, we have 

approximately, 

( )⎥⎦
⎤

⎢⎣
⎡ −+≈ 0549.00875.0exp1.3 0 χσ

Nv
pTNkBc ,    (4.40) 

which weakly depends on χ. Interestingly, the first term in the bracket of Eq. (4.40) compares 

closely with Biot’s prediction of the critical stress ( TNkBc 08.3=σ ) for an incompressible 

rubber-like half-space under plane-strain compression (Biot, 1963). The second term becomes 

significant when the value of Nv is comparable to or smaller than the normalized vapor pressure 

( 5
0 103.2 −×=p ).  

Based on their experiments with a model system of poly(acrylamide-co-sodium 

acrylate) hydrogels, Trujillo et al. (2008) found that the onset of surface creasing instability 

corresponds to an effective linear compressive strain of ~0.33, in close agreement with Biot’s 

prediction for a rubber-like half-space under equi-biaxial compression. We calculate the 

effective linear strain by comparing the laterally confined hydrogel layer to un-constrained free 

swelling of the same hydrogel system. As given in the previous studies (Hong et al., 2009A; 

Kang and Huang, 2009), the linear swelling ratio for free swelling can be obtained as a function 

of the chemical potential by solving the following equation 
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Similar to Eq. (3.6), we have modified the previous solution slightly to account for the external 

pressure (p) such that the free swelling ratio (λ0) is independent of the external chemical 

potential when 0ˆ >μ
 
or p > p0. The effective linear strain from the state of free swelling to 

that of the laterally confined swelling is then 

0

0 1
λ

λε −
= .      (4.42) 

Figure 7b plots the effective linear strain corresponding to the critical chemical potential in Fig. 

5b, where the dashed lines show the maximum strain at 0=μ . While the maximum strain 

decreases monotonically with increasing Nv, the critical strain for swell-induced surface 

instability increases with Nv, due to the increasing critical chemical potential. Remarkably, the 

predicted critical strain is very close to 0.33 for hydrogel systems with Nv < 10-4. By using the 

approximate solution for the critical chemical potential in Eq. (4.38), we obtain approximately, 

5.10875.0 6/1
0 =≈ −λ , and thus 33.0≈ε .  

Among various critical quantities shown in Figs. 5 and 7, the critical swelling ratio can 

be directly measured experimentally. As noticed previously (Hong et al., 2009B), the wide 

range of the reported critical swelling ratios (from 2 to 3.72) has not been well understood. 

While the present study predicts a range of critical swelling ratios (from 2.5 to 3.4), in 

reasonable agreement with the reported values, quantitative comparisons for specific hydrogel 

systems are not possible at the moment, because the two key parameters (Nv and χ) that 

determine the critical swelling ratio in the present model are not readily available from the 

reported experiments. In principle, both Nv and χ can be measured by independent experiments. 
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For example, Nv is related to the initial shear modulus of the polymer network (NkBT), which in 

turn can be related to the crosslink density and molecular weight (Treloar, 1975). The 

interaction parameter χ can be determined by measuring the volume ratio of free swelling (e.g., 

Gee, 1946). It was also suggested that χ is inversely proportional to the temperature (Li and 

Tanaka, 1992). Consequently, the stability of the confined hydrogel layer may depend on 

temperature. 

We close this section by pointing out that the present analysis of surface instability 

assumes a quasi-statically controlled swelling process, where the chemical potential is ramped 

up slowly as a loading parameter and the hydrogel swells to an equilibrium state at each loading 

step until the onset of surface instability. The same process will be simulated numerically using 

a nonlinear finite element method in the next section. However, in many experiments (e.g., 

Tanaka et al., 1987; Trujillo et al., 2008), as a hydrogel is immersed in a solvent of a constant 

chemical potential (like a step loading), swelling is a kinetic process with non-equilibrium 

transient states. The kinetics of molecular transport coupled with large deformation of the 

polymer network could lead to a rich dynamics of evolving surface instability patterns, which 

presents an interesting topic for future studies.  

 

5. Numerical simulations 

 In this section, we use a nonlinear finite element method developed in a previous study 

(Kang and Huang, 2009) to numerically simulate swelling of a confined hydrogel layer and 

surface evolution beyond the critical point predicted by the linear perturbation analysis. The 

hydrogel layer is modeled with two-dimensional plane-strain elements (CPE4) in the commercial 

package ABAQUS (2008), along with a self-developed user subroutine (UMAT) for the 
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constitutive behavior of hydrogels. The lower surface of the hydrogel layer is fixed, while the 

upper surface is subjected to a pressure that depends on the chemical potential according to Eq. 

(2.3). Symmetric boundary conditions are imposed at the two vertical sidewalls of the model so 

that the layer can only swell in the thickness direction. The chemical potential in the hydrogel is 

ramped up as a loading parameter, and the equilibrium equations of the system are solved at each 

step by a nonlinear solver based on the Newton-Raphson method. As in the previous study (Kang 

and Huang, 2009), to circumvent the numerical difficulty with the negative infinite chemical 

potential at the dry state, we start each numerical simulation with an initial state of homogeneous 

swelling, for which the chemical potential can be determined analytically by Eq. (3.6) for a 

specific hydrogel system. A small perturbation is then introduced as surface imperfection, which 

is generated using cubic spline curves in ABAQUS. 

 Figure 8(a-e) show the snapshots from one simulation, for a hydrogel layer with Nv = 

0.001 and χ = 0.4. Figure 8a shows the initial state of homogeneous swelling (λh = 2 and μ = -

0.0916) with a small surface perturbation. At μ = -0.00456 (Fig. 8b), the hydrogel layer has 

swollen nearly twice as much while the surface perturbation has grown considerably, resulting in 

a clearly inhomogeneous distribution of the compressive stress (σ11) in the layer. As the chemical 

potential continues to rise, the surface perturbation evolves to form localized grooves (Fig. 8c), 

and eventually the two sides of the groove fold into other, forming surface creases (Fig. 8, d and 

e). A frictionless, hard self-contact is defined for the surface to prevent penetration. The 

simulation is stopped at μ  = 0. The evolution of the hydrogel surface is shown more clearly in 

Fig. 9 (a-e), where a self-similar growth of the initial perturbation is followed by formation of 

surface grooves and creases. It is thus suggested that the onset of swell induced surface 

instability in a confined hydrogel layer as predicted by the linear perturbation analysis in Section 
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4 could grow into surface creases as a result of the nonlinear post-instability effect. As an 

analogy, formation of surface grooves has been shown in simulations for surface evolution of 

stressed crystals facilitated by surface diffusion (Yang and Srolovitz, 1994; Pang and Huang, 

2006), as a nonlinear phenomenon following the growth of initially linear perturbations. 

 

6. Concluding Remarks 

 Based on a previously developed theoretical framework, we have presented a linear 

perturbation analysis for swelling deformation of a confined hydrogel layer on a rigid substrate, 

which provides a theoretical understanding on the critical condition for onset of surface 

instability. The predicted critical condition depends on the two dimensionless material 

parameters (Nv and χ) of specific hydrogel systems. In particular, the critical swelling ratio 

varies from 2.5 to 3.4. Using a nonlinear finite element method, numerical simulations are 

presented to show the swelling process of a confined hydrogel layer, with evolution of an initial 

surface perturbation followed by formation of surface creases.  

As pointed out previously (Trujillo et al., 2008), the surface instability places a 

fundamental limit on the degree of swelling for a confined hydrogel layer without formation of 

undesirable surface features for applications such as cell culture and smart surface coatings. Here 

we suggest that such a limit shall be understood on a system specific basis, which also opens the 

possibilities to achieve an optimal degree of swelling by selecting a specific solvent system along 

with molecular structures of the polymer network. Furthermore, theoretical understanding on the 

critical condition and post-instability surface evolution could also facilitate development of 

controllable surface patterns in soft materials for a range of applications (e.g., microdevices and 

tissue engineering) (Guvendiren et al., 2009). The field is wide open as surface instability of 
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hydrogels can be influenced by many other effects not considered in the present study, such as 

kinetics and electrochemistry in polyelectrolyte (PE) gels. 
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APPENDIX 

For completeness, we present here the degenerated solutions to the eigenvalue problem in Eqs. 

(4.17)-(4.18). First, the eigenvalue problem is degenerated when  
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It can be shown that this is only possible when χ > 0.5. In this case, the two equilibrium 

equations in (4.12)-(4.13) become uncoupled, and the eigenvalue problem becomes 

[ ] 01
222 =+− uqk hλ ,       (A.2) 

[ ] 02
222 =+− uqk hλ ,       (A.3) 

which has two eigenvalues,
 h

kq
λ
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The complete solution then takes the form 
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Applying the boundary conditions in (4.25) and (4.28), we obtain Eq. (4.33), but with the 

coefficient matrix as follows: 
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Setting the determinant of (A.6) to be zero, we have 

( )0coth khh =λ .      (A.7) 

Eq. (A.7) gives the critical swelling ratio as a function of kh0, but only for the degenerated cases 

when Eq. (A.1) is satisfied. 

A second degeneration of the eigenvalue problem occurs when 01
2 =
+
+

=
hhh

hh

ξλλ
ξλβ , or 

equivalently, when 1−=hhξλ . In this case, we have three eigenvalues instead of four in Eq. 

(4.21), namely 

h

kq
λ

±=2,1  and 043 == qq .     (A.8) 

Consequently, the complete solution becomes 
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where the eigen vectors for the first two eigenvalues are the same as in Eq. (4.24). Again, 

applying the boundary conditions in (4.25) and (4.28), we obtain Eq. (4.33), but with the 
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coefficient matrix as follows: 
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Setting the determinant of (A.11) gives the critical swelling ratio for the second degenerated case. 

It is found that, for all material parameters considered in the present study, the critical swelling 

ratios for both the degenerated cases are greater than the maximum homogeneous swelling ratio 

at the equilibrium chemical potential. Therefore, the prediction of swell induced surface 

instability is unaffected by the degeneration in the eigenvalue problem. 
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Figure Captions 

Figure 1. Schematic illustration of the reference state (dry state) and the equilibrium state of a 
hydrogel in a solvent with an chemical potential μ̂ .  
 
Figure 2. Schematic illustrations for (a) homogeneous swelling of a hydrogel layer, and (b) a 
perturbation to the swollen hydrogel layer. 
 
Figure 3. Homogeneous swelling ratio of a hydrogel layer (Nv = 0.001 and χ = 0.4) as a function 
of the external chemical potential. 
 
Figure 4. (a) Critical swelling ratio and (b) the corresponding chemical potential, predicted by 
the linear perturbation analysis, versus the perturbation wave number for Nv = 0.001. 
 
Figure 5. (a) Critical swelling ratio and (b) critical chemical potential, predicted by the linear 
perturbation analysis at an infinite wave number (short-wavelength limit), versus Nv for different 
values of χ.  
 
Figure 6. A stability diagram for substrate-confined hydrogel layers. 
 
Figure 7. (a) Critical compressive stress and (b) critical linear strain, versus Nv for different 
values of χ. The dashed lines in (a) show the compressive stress at the maximum homogeneous 
swelling, and the dashed lines in (b) show the effective strain for homogeneous swelling at µ = 0. 
The horizontal dash-dotted line in (b) indicates the critical strain (0.33) for a semi-infinite rubber 
under equi-biaxial compression. 
 
Figure 8. Numerical simulation of swell-induced surface instability of a confined hydrogel layer 
(Nv = 0.001 and χ = 0.4) on a rigid substrate. Contours show distribution of the compressive true 
stress in the lateral direction (σ11). (a) Initial perturbation at μ  = -0.0916; (b) μ = -0.00456; (c) 
μ  = -0.00126; (d) μ  = -0.000713; and (e) μ  = 0. The stress magnitude in the scale bar is 
normalized by the initial shear modulus of the polymer network (NkBT). 
 
Figure 9. Evolution of the surface profile of a confined hydrogel layer (Nv = 0.001 and χ = 0.4) 
on a rigid substrate. (a) Initial perturbation at μ  = -0.0916; (b) μ = -0.00456; (c) μ  = -
0.00126; (d) μ  = -0.000713; and (e)μ  = 0. 
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Figure 1. Schematic illustration of the reference state (dry state) and the equilibrium state of a 

hydrogel in a solvent with an chemical potential μ̂ .  
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Figure 2. Schematic illustrations for (a) homogeneous swelling of a hydrogel layer, and (b) a 

perturbation to the swollen hydrogel layer. 
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(b) 
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Figure 3. Homogeneous swelling ratio of a hydrogel layer (Nv = 0.001 and χ = 0.4) as a 

function of the external chemical potential. 
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Figure 4. (a) Critical swelling ratio and (b) the corresponding chemical potential, predicted by 

the linear perturbation analysis, versus the perturbation wave number for Nv = 0.001. 

(a) 

(b) 
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Figure 5. (a) Critical swelling ratio and (b) critical chemical potential, predicted by the linear 

perturbation analysis at an infinite wave number (short-wavelength limit), versus Nv for different 

values of χ.  
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Figure 6. A stability diagram for substrate-confined hydrogel layers. 
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Figure 7. (a) Critical compressive stress and (b) critical linear strain, versus Nv for different 

values of χ. The dashed lines in (a) show the compressive stress at the maximum homogeneous 

swelling, and the dashed lines in (b) show the effective strain for homogeneous swelling at µ = 0. 

The horizontal dash-dotted line in (b) indicates the critical strain (0.33) for a semi-infinite rubber 

under equi-biaxial compression.   
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(b) 



38 
 

(a)  

(b)  

(c)  

(d)  

(e)  
 
Figure 8. Numerical simulation of swell-induced surface instability of a confined hydrogel layer 
(Nv = 0.001 and χ = 0.4) on a rigid substrate. Contours show distribution of the compressive true 
stress in the lateral direction (σ11). (a) Initial perturbation at μ  = -0.0916; (b) μ = -0.00456; (c) 
μ  = -0.00126; (d) μ  = -0.000713; and (e) μ  = 0. The stress magnitude in the scale bar is 
normalized by the initial shear modulus of the polymer network (NkBT).  



39 
 

 

 

 
Figure 9. Evolution of the surface profile of a confined hydrogel layer (Nv = 0.001 and χ = 0.4) 
on a rigid substrate. (a) Initial perturbation at μ  = -0.0916; (b) μ = -0.00456; (c) μ  = -
0.00126; (d) μ  = -0.000713; and (e)μ  = 0. 
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