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ABSTRACT 

A hydrogel consists of a cross-linked polymer network and solvent molecules. Depending on its 

chemical and mechanical environment, the polymer network may undergo enormous volume 

change. The present work develops a general formulation based on a variational approach, which 

leads to a set of governing equations coupling mechanical and chemical equilibrium conditions 

along with proper boundary conditions. A specific material model is employed in a finite 

element implementation, for which the nonlinear constitutive behavior is derived from a free 

energy function, with explicit formula for the true stress and tangent modulus at the current state 

of deformation and chemical potential. Such implementation enables numerical simulations of 

hydrogels swelling under various constraints. Several examples are presented, with both 

homogeneous and inhomogeneous swelling deformation. In particular, the effect of geometric 

constraint is emphasized for inhomogeneous swelling of surface-attached hydrogel lines of 

rectangular cross-sections, which depends on the width-to-height aspect ratio of the line. The 

present numerical simulations show that, beyond a critical aspect ratio, crease-like surface 

instability occurs upon swelling. 
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1. Introduction 

An aggregate of a polymer network and small molecules (e.g., water) forms a polymeric 

hydrogel. In response to various environmental stimuli (e.g., temperature, vapor pressure, pH, 

electric field), a hydrogel can swell or shrink dramatically by absorbing or desorbing the solvent 

molecules. The stimuli-responsive properties of hydrogels along with their degree of flexibility 

similar to natural tissues have led to a wide range of applications in biotechnology and medicine 

[1-4], including drug delivery, tissue engineering, biosensors, as well as other microdevices [5-7].  

Complex material behaviors of hydrogels with large, reversible deformation and various 

instability patterns have been observed in experiments [8-17], which have motivated a large body 

of theoretical and numerical studies [18-30]. Recently, following the classical works by Gibbs 

[31] and Biot [32, 33], Hong et al. [27] formulated a nonlinear field theory coupling diffusion of 

solvent molecules and large deformation of polymeric gels. With a specific material model, such 

a theory enables analyses of swelling induced deformation phenomena in hydrogels under 

various physical and geometrical constraints [28-30].  

In an effort to study the effects of constraint on swelling of polymeric thin films and 

nanolines [4, 9-17], the present paper reformulates the theory by Hong et al. [30] in a general 

variational form and develops an alternative method for finite element analysis of equilibrium 

states of polymeric hydrogels swollen under constraints. The remainder of this paper is organized 

as follows. Section 2 presents the general statements of the variational principle and derives the 

equilibrium equations along with boundary conditions for the coupled mechanical and chemical 

fields. Section 3 develops a finite element method for numerical simulations using the user-

defined material (UMAT) feature of the commercial package ABAQUS. Analytical and 
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numerical solutions are presented in Section 4 for homogeneous and inhomogeneous swelling of 

hydrogels, where the effects of geometric constraints are emphasized.  

 

2. Theory – A Variational Approach 

 

2.1. General statements 

Consider a hydrogel body (current state) of volume Ω enclosed by a surface Γ, subjected 

to a distributed body force, bi, and surface traction, ti. In addition, the hydrogel is immersed in a 

solvent environment of chemical potential μ̂  (per solvent molecule), and transport of the solvent 

molecules occurs within the hydrogel body and across the surface Γ. As illustrated in Fig. 1, part 

of the surface Γ may be mechanically constrained (e.g., attached to a rigid surface) and/or 

chemically isolated from the solvent.  

With an infinitesimal variation to the current state in terms of both mechanical 

displacement and molecular transport, the total work done to the hydrogel includes the 

mechanical work by the body force and the surface traction and the chemical work via 

absorption of solvent molecules, namely, 

∫∫∫ ΓΓΩ
−+= dSindSxtdVxbW kkiiii δμδδδ ˆ ,    (1) 

where δxi is the variation of the current position and δik is the variation of the molecular flux, 

defined as the number of solvent molecules across per unit area of a surface element with the 

surface normal in the direction xk. The vector product -nkδik gives the number of solvent 

molecules entering the gel across per unit area of its surface, where nk is the unit normal vector 

on the surface (positive outwards). We ignore the injection of solvent molecules by distributed 

pump that was included in the theory by Hong et al. [27]. Additional terms may be added in Eq. 
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(1) to include works done by other fields (e.g., temperature, electric field), which is beyond the 

scope of the present study. 

  Assuming a free energy density function for the hydrogel, u, the variation of the total free 

energy of the hydrogel is 

 ( )∫Ω=Φ udVδδ .      (2) 

The functional form of u determines the constitutive behavior of the hydrogel, which will be 

discussed later with a specific material model. 

The variation of the free energy for the thermodynamic system including the hydrogel 

and its mechanical/chemical environment is 

WG δδδ −Φ= .       (3) 

For all thermodynamically permissible variations, 0≤Gδ [34]. If the current state is a 

thermodynamically equilibrium state, 0=Gδ  for any arbitrary variation. Otherwise, the system 

evolves to reduce its free energy ( 0<Gδ ). 

Furthermore, mass conservation of the solvent molecules requires that 

( ) ∫∫ ΓΩ
−= dSincdV kkδδ .     (4) 

where c is the concentration of the solvent molecule in the hydrogel (i.e., number of molecules 

per unit volume at the current state). Eq. (4) simply states that the total number of solvent 

molecules in the gel changes only as the molecules enter or leave the gel through its boundary 

(Γ), assuming no sources or distributed pumps inside the body (Ω). We emphasize that this 

statement does not assume incompressibility of the solvent molecules or the polymer network. 

 The left-hand side of Eq. (4) can be decomposed into two parts, namely 

( ) ∫∫∫ ΩΩΩ
+= dVxccdVcdV kk ,δδδ ,    (5) 
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where the second term on the right-hand side of Eq. (5) represents the contribution from the 

volume change of the gel, with kkx ,δ
 
being the linear volumetric strain for an infinitesimal 

variation from the current state.   

By substituting Eq. (5) into Eq. (4) and applying the divergence theorem on the right-

hand side, we obtain that 

( ) ∫∫ ΩΩ
−=+ dVidVxcc kkkk ,, δδδ .    (6) 

For Eq. (6) to hold everywhere inside the gel, it necessarily requires that 

Ω−−= in     kkkk xcic ,, δδδ .     (7) 

 Therefore, the general statements of the variational principle for the hydrogel include one 

for the variation of free energy (Eq. 3) and one for mass conservation (Eq. 4 or 7).  

 

2.2. Nominal quantities 

It is often convenient to use nominal quantities referring to a reference configuration with 

fixed volume Ω0 and surface Γ0. As illustrated in Fig. 1, a deformation gradient tensor F maps 

the reference configuration to the current state, namely,  

KiKi dXFdx =  and 
K

i
iK X

xF
∂
∂

= ,     (8) 

where XK refers to the fixed coordinates at the reference state. While the choice of the reference 

state is arbitrary in general, we choose the dry state of the hydrogel as the reference state in the 

present study. As will be discussed later, such a choice is necessary for the use of a specific free 

energy function. On the other hand, it poses a numerical challenge that has to be circumvented in 

finite element analysis. 
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The differential volume and surface area at the current state are related to those in the 

reference state by 

0JdVdV =  and 0dSNAdSn JiJi = ,     (9) 

where NJ is the unit normal of the surface at the reference state, and 

 ( )Fdet=J , kLjKJKLijkiJ FFeeA
2
1

= .     (10) 

Thus, the nominal quantities (in upper cases) can be defined as follows: 

• Nominal body force B: dVbdVB ii =0 ; 

• Nominal surface traction T: dStdST ii =0 ; 

• Nominal molecular flux I: dSindSIN kkKK δδ =0 ; 

• Nominal free energy density U: udVUdV =0 ; 

• Nominal molecular concentration C: cdVCdV =0 . 

 

In terms of the nominal quantities, the variational statements in Eqs. (1), (2), and (4) are re-

cast as 

∫∫∫ ΓΓΩ
−+=

000
000 ˆ dSINdSxTdVxBW KKiiii δμδδδ ,   (11) 

∫Ω=Φ
0

0UdVδδ ,       (12) 

∫∫ ΓΩ
−=

00
00 dSINCdV KKδδ .      (13) 

Applying the divergence theorem to Eq. (13) leads to  

( )K
K

I
X

C δδ
∂
∂

−=     in Ω0.      (14) 
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2.3. Equilibrium equations 

At the equilibrium state, 0=−Φ= WG δδδ , and thus  

∫∫∫∫ ΓΓΩΩ
−+=

0000
0000 ˆ dSINdSxTdVxBUdV KKiiii δμδδδ .   (15) 

Assume a general form of the nominal free energy density function, ( )CU ,F . Variation 

of the free energy at the left hand side of Eq. (15) can be carried out as follows: 

( ) ( )∫∫

∫∫∫

ΩΩ

ΩΩΩ

∂
∂

∂
∂

−
∂
∂

∂
∂

=

∂
∂

+
∂
∂

=

00

000

00

000

dVI
XC

UdVx
XF

U

CdV
C
UdVF

F
UUdV

K
K

i
KiK

iK
iK

δδ

δδδ

                
.   (16) 

By applying the divergence theorem, we obtain that 

∫∫

∫∫∫

ΩΓ

ΩΓΩ

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+
∂
∂

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−
∂
∂

=

00

000

00

000

dVI
C
U

X
dSIN

C
U

dVx
F
U

X
dSxN

F
UUdV

K
K

KK

i
iKK

iK
iK

δδ

δδδ

                   
.    (17) 

Thus, the equilibrium condition in Eq. (15) becomes 

0ˆ
00

00

00

00

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛ −
∂
∂

−

⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

∫∫

∫∫

ΩΓ

ΩΓ

dVI
C
U

X
dSIN

C
U

dVxB
F
U

X
dSxTN

F
U

K
K

KK

ii
iKK

iiK
iK

δδμ

δδ
    .   (18) 

For Eq. (18) to hold for any arbitrary variations, it necessarily requires that 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

0

0

C
U

X

B
F
U

X

K

i
iKK   in Ω0,    (19) 

and  
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⎪
⎪
⎩

⎪⎪
⎨

⎧

==
∂
∂

==
∂
∂

0or    ˆ

0or    

KK

iiK
iK

IN
C
U

xTN
F
U

δμ

δ
          on Γ0.    (20)  

The governing equations for the equilibrium state of the hydrogel are thus established in Eq. (19), 

along with the boundary conditions in Eq. (20). It is noted that, in the variational analysis, the 

deformation gradient (F) and the concentration (C) have been taken as the state variables in the 

definition of the free energy function (U), while the mechanical displacement of the polymer 

network ( ixδ ) and molecular flux of the solvent ( KIδ ) are the physical processes that change the 

current state of the hydrogel. At the equilibrium state, the free energy G is minimized with 

respect to any arbitrary variations in both the displacement and flux. 

Now we may define the nominal stress and chemical potential as work conjugates of the 

deformation gradient and solvent concentration, respectively: 

iK
iK F

Us
∂
∂

=  and 
C
U
∂
∂

=μ .      (21) 

The equilibrium equations and the boundary conditions are then re-written as 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
∂
∂

=+
∂
∂

0

0

K

i
K

iK

X

B
X
s

μ
  in Ω0,      (22) 

and 

⎩
⎨
⎧

==
==

0or    ˆ
0or    

KK

iiKiK

IN
xTNs

δμμ
δ

          on Γ0.     (23)  

We note that, in addition to the familiar boundary conditions for the mechanical traction 

(natural) and displacement (essential), the chemical boundary condition can be specified either 
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by the chemical potential of the external solvent or by zero flux (e.g., surface isolated or blocked 

from the solvent). It is also possible to have mixed boundary conditions. 

The two field equations in (22) appear to be uncoupled. However, both the nominal stress 

siK and the chemical potential μ are derived from the same free energy density function U, which 

are coupled in general through the constitutive behavior of the hydrogel. The second equation 

(chemical equilibrium) dictates that the chemical potential be a constant at the equilibrium state 

(if it exists). This is only possible when the hydrogel is in contact with a homogeneous solvent of 

a constant chemical potential, i.e., const.ˆ == μμ  The constant chemical potential in the hydrogel 

as an equilibrium condition is analogous to the constant temperature as an equilibrium condition 

for heat transfer. 

 The chemical potential of the external solvent, either in a liquid or a gaseous state, is 

given by [27] 

( )⎩
⎨
⎧

<
>−

=
,,/log
;,)(

ˆ
00

00

ppppTk
ppvpp

B  if
 if

μ      (24) 

where p is the pressure in the solvent, p0 is the equilibrium vapor pressure, v is the volume per 

solvent molecule, T is the absolute temperature, and kB is the Boltzmann constant. At the 

equilibrium vapor pressure (p = p0), the external chemical potential 0ˆ =μ .  

At a non-equilibrium state, the solvent molecules migrate within the gel and the polymer 

network deforms to reduce the potential energy G, i.e., δG < 0. Assuming self diffusion as the 

dominant kinetic process, Hong et al. [27] developed a kinetic model, based on which a finite 

element method was developed for transient analysis of swelling polymeric gels [30]. The 

present study focuses on analysis of equilibrium states only. 
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2.4. A free energy function for hydrogel 

In addition to the governing equations, a specific functional form of the free energy 

density, ),( CU F , is needed for the analysis of swelling deformation of hydrogels. Following the 

approach by Flory [35], we adopt a free energy function that consists of two parts, one for elastic 

deformation of the polymer network and the other for mixing of the solvent molecules with the 

polymer chains, namely  

)()(),( CUUCU me += FF .     (25) 

Based on a statistical mechanics model of rubber elasticity, the elastic free energy density 

was obtained by Flory [35, 36] as 

( ) ( )[ ]321
2
3

2
2

2
1 ln3

2
1 λλλλλλ −−++= TNkU Be F ,   (26) 

where λ1, λ2, and λ3 are the principal stretches in the principal directions of the deformation 

gradient tensor F, and N is the effective number of polymer chains per unit volume of the 

hydrogel at the dry state which is related to the cross-link density of the polymer network. It is 

well known that NkBT defines the initial shear modulus of an elastomer [37]. When the 

deformation does not change volume (i.e., λ1λ2λ3 = 1), Eq. (26) reduces to the familiar strain 

energy density function for incompressible neo-Hookean materials [38]. For swelling 

deformation of a hydrogel, however, the volume changes dramatically. The last term in the 

bracket of Eq. (26), resulting from the entropy change associated with the volume change, is 

however problematic from a mechanics consideration [37, 39]. To account for the volume 

change in rubber elasticity, many other forms of the free energy function have been suggested 

[37, 39-42]. In the present study, following Hong et al. [27], we take the elastic free energy 

function as 
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( ) ( )[ ] ( )JFFTNkTNkU iKiKBBe ln23
2
1ln23

2
1

321
2
3

2
2

2
1 −−=−−++= λλλλλλF ,  (27) 

which differs from Eq. (26) by a factor of 2 in the volumetric term. The same functional form 

was suggested by others from mathematical considerations [39] as well as a statistical mechanics 

model [43, 44]. Note that the principal stretches and deformation gradient in Eq. (27) are defined 

with respect to the dry state as the reference, which is assumed to be isotropic. The functional 

form should be modified accordingly if a different reference state is used.  

 Based on Flory-Huggins polymer solution theory [35, 45], the free energy change due to 

mixing of pure solvent with a polymer network was obtained as: 

( )[ ]ϕχϕ −+=Δ 1ln 11 nnTkF Bm ,     (28) 

where n1 is the number of solvent molecules, φ is the volume fraction of the solvent, and χ is a 

dimensionless quantity that characterizes the interaction energy between the solvent and the 

polymer. The first term on the right hand side of Eq. (28) comes from the entropy of mixing, and 

the second term from the heat of mixing (enthalpy). 

 By the assumption of molecular incompressibility, the volume swelling ratio of the 

hydrogel is 

vC
V
VJ +== 1

0

.       (29) 

It then follows that CVn 01 =  and 
vC

vC
+

=
1

ϕ . Thus, the free energy of mixing per unit volume is 

⎟
⎠
⎞

⎜
⎝
⎛

+
+

+
=

Δ
=

vC
vC

vC
vCvC

v
Tk

V
FCU Bm

m 11
ln)(

0

χ .   (30) 

Eq. (30) differs slightly from that given in Hong et al. [27] by a constant, which is 

insignificant for swelling deformation. At the dry state, we have C = 0 and Um = 0. The tendency 

to increase the entropy of mixing (thus to decrease the free energy) drives the solvent molecules 
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to enter the polymer network. This tendency to mix may be either opposed (χ > 0) or enhanced (χ 

< 0) by the heat of mixing, depending on the sign of χ. Furthermore, as the process of absorption 

proceeds, the elastic energy of the network increases as a penalty of swelling. Ultimately, a state 

of equilibrium swelling may be obtained, in which the total free energy reaches a minimum. 

In search for the equilibrium swelling state, the condition of molecular incompressibility 

in Eq. (29) can be imposed as a constraint that relates the solvent concentration C to the 

deformation of the polymer network. In the cases of homogeneous swelling, a term with a 

Lagrange multiplier for the constraint can be added to the free energy function, namely 

( )JCCUUCU me −+Π++= ν1)()(),( FF .    (31) 

As defined in Eq. (21), the principal nominal stresses are obtained as 

.1

,1

,1

21
3

3
3

3

31
2

2
2

2

32
1

1
1

1

λλ
λ

λ
λ

λλ
λ

λ
λ

λλ
λ

λ
λ

Π−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∂
∂

=

Π−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∂
∂

=

Π−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∂
∂

=

TNkUs

TNkUs

TNkUs

B

B

B

     (32) 

In Eq. (32), the Lagrange multiplier Π represents the osmotic pressure, resulting from the 

condition of molecular incompressibility. For free, isotropic swelling, we have 0321 === sss  

and λλλλ === 321 , which leads to an osmotic pressure, ⎟
⎠
⎞

⎜
⎝
⎛ −=Π 3

11
λλ

TNkB . As expected, the 

osmotic pressure is zero at the undeformed dry state ( 1=λ ). The predicted osmotic pressure at 

the dry state would not vanish if the elastic free energy function in Eq. (26) instead of Eq. (27) 

was used. 

The chemical potential in the swollen hydrogel is obtained from Eq. (31) as 
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( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+

+
+

+
+

+
=

∂
∂

= 32
11

11
1

1
ln

λλ
ν

ν
χ

νν
νμ N

CCC
CTk

C
U

B .  (33) 

The last term in the bracket of Eq. (33) represents a modification to the chemical potential due to 

elastic reaction of the polymer network. A similar formula for the chemical potential was 

obtained by Flory [35], with a factor of 2 difference in the last term. The difference results from 

the different forms of the elastic free energy function in Eqs. (26) and (27).  

By setting μμ ˆ=  as the external chemical potential defined in Eq. (24) and noting 

13 −= λvC  by molecular incompressibility, the isotropic, homogeneous equilibrium swelling 

ratio can be solved from Eq. (33) as  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= χμλλ ,;

ˆ
Nv

TkB

,       (34) 

where the two dimensionless quantities (Nv and χ) characterize the material system, with N for 

the polymer network structure, v for the solvent molecules, and χ for the solvent-polymer 

interaction. The effect of the external environment (e.g., temperature and vapor pressure) is 

accounted for in Eq. (34) via the normalized chemical potential. As an example, at the 

equilibrium vapor pressure, we have 0ˆ =μ  and λ = 3.390 for a hydrogel with  χ = 0.1 and νN = 

10-3; the corresponding volume ratio of swelling is: 96.383 == λJ . 

It is noted that the first term in the bracket of Eq. (33) is unbounded at the dry state (when 

C = 0). This is consistent with the definition of the external chemical potential in Eq. (24), which 

approaches negative infinity as the vapor pressure approaches zero (i.e., vacuum). However, the 

negative infinite chemical potential at the dry state poses a challenge for numerical simulations 

of swelling deformation under constraints from the dry state, as will be discussed in the 

subsequent sections. 
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3. Formulation of a Finite Element Method 

Simple, analytical solutions can be obtained for homogeneous swelling of hydrogels from 

the above theoretical framework [27]. For inhomogeneous swelling with complex geometric and 

physical constraints, however, numerical approaches are often necessary [27-30]. With the 

variational form of the present theory, a finite element method may be developed to solve the 

coupled field equations in Eq. (22). Alternatively, following Hong et al. [29], a Legendre 

transformation of the free energy density function leads to   

( ) CCUU μμ −= ),(,ˆ FF ,     (35) 

which can then be used to solve for the equilibrium swelling deformation with a prescribed 

chemical potential µ. Since the chemical potential must be a constant at the equilibrium state 

( μμ ˆ= ), a standard nonlinear finite element method for hyperelasticity [46] can be employed to 

solve for the equilibrium swelling deformation field (F). The concentration field (C), which is 

inhomogeneous in general, can then be obtained from the condition of molecular 

incompressibility, i.e., ( ) vJC /1−= . 

 Substituting Eqs. (27) and (30) into the free energy function in Eq. (25) and then into Eq. 

(35) and replacing vC with 1−J , we obtain that 

( ) ( ) ( )111ln1ln23
2
1),(ˆ −−⎥⎦

⎤
⎢⎣
⎡ −

+
−

−+−−= J
J

J
J

JJTkJITNkU B
B ν

μχ
ν

μF , (36) 

where iKiK FFI = . At the undeformed dry state, we have J = 1 and I = 3 so that 0ˆ =U . However, 

the chemical potential at the dry state is singular ( −∞=μ ), which cannot be accurately specified 

for numerical simulations. To circumvent this inconvenience, an auxiliary configuration with a 

finite value of the chemical potential is used as the initial state in numerical simulations, as 
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illustrated in Fig. 1. The choice of the initial state should be such that (a) the corresponding 

swelling deformation is homogeneous, and (b) the essential boundary conditions at the dry state 

are satisfied. The condition (a) allows the chemical potential at the initial state to be obtained 

analytically, and the condition (b) ensures that the effect of constraints on swelling by the 

essential boundary conditions is maintained at the initial state and throughout the subsequent 

swelling process. In a previous study [29], a free, isotropic swelling deformation is assumed for 

the initial state, which does not necessarily satisfy the condition (b) for swelling of hydrogels 

under geometric constraints. In the present study, we choose an initial state with swelling 

deformation in form of 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
)1(

3

)1(
2

)1(
1

00
00
00

λ
λ

λ
(1)F .     (37) 

The three principal stretches at the initial state and the corresponding chemical potential ( 1μμ = ) 

depend on specific constraints imposed by the essential boundary conditions, as will be discussed 

in the next section. 

As illustrated in Fig. 1, the total swelling deformation from the dry state is decomposed 

into two parts as: 

(1)(2)FFF = ,       (38) 

where F(2) is the deformation gradient from the initial state ( 1μμ = ) to the final state of 

equilibrium ( μμ ˆ= ) and is to be solved numerically by the finite element method.  

 The nonlinear constitutive behavior of a hydrogel can be specified as a user-defined 

material in a standard finite element package such as ABAQUS [47]. In particular, ABAQUS 

offers two options for such implementation, with the user subroutine UHYPER or UMAT. The 
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former (UHYPER) is specialized for hyperelastic materials, but with the restriction that the 

initial state must be isotropic. Assuming isotropic swelling at the initial state, a user subroutine 

with UHYPER was developed previously [29]. In the present study, with a generally anisotropic 

initial state as given in Eq. (37), we develop an alternative implementation for swelling of 

hydrogels under constraints using a UMAT subroutine in ABAQUS. As a general material 

subroutine, the procedures for UMAT implementation are quite different from those for 

UHYPER. In the UHYPER subroutine, the free energy function and its derivatives with respect 

to the deviatoric strain invariants are coded [29]. The restriction of such an implementation to an 

isotropic initial state results from the decomposition of the deformation gradient into a 

volumetric part and a deviatoric part. The present implementation using UMAT removes this 

restriction, but requires lengthy derivation of explicit formula for the true (Cauchy) stress and its 

variation with respect to the current state in terms of a fourth-order tangent modulus tensor. 

 First, the nominal stress is obtained as 

iKiKiK
iK F

J
J
U

F
I

I
U

F
Us

∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

=
ˆˆˆ

.     (39) 

By definition, the Kirchoff stress is 

jK
iKiK

jKiKij F
F
J

J
U

F
I

I
UFsJ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂

∂
∂

+
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where σij is the true stress at the current state. Using the free energy function in Eq. (36), we 

obtain that 
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Furthermore, it can be shown that 
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=
∂
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Substituting Eqs. (41-43) into Eq. (40), we obtain an explicit formula for the true stress: 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−
+

−
+=

−

TkJJ
Nv

J
J

N
BJTNk

B

ij
ijBij

μχ
ν

δ
σ 2

3
1 11ln ,   (44) 

where jKiKij FFJB 3/2−=  is the deviatoric stretch tensor and ijδ  is the Kronecker delta. 

Next, variation of the Kirchoff stress gives that 
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It can be shown that 

kkDJJ δδ = ,        (46) 
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where  
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In the above, iuδ  is the variation displacement, ijDδ  is the symmetric part of the deformation 

gradient, and ijWδ  is the antisymmetric part (spin), all of which are variational quantities with 

respect to the current state. 

 By substituting Eqs. (46) and (47) into Eq. (45), we obtain that 

( ) ( )kjikikkjklijklij WWJDJCJ δσδσδσδ −+= ,     (52) 

where an explicit formula for the tangent modulus tensor at the current state is obtained as 
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The second term on the right-hand side of Eq. (52) results from rotation of the local coordinates, 

which is not needed in the material subroutine [47]. The first term on the right-hand side of Eq. 

(53) gives the tangent modulus for an incompressible, neo-Hookean material. 

With Eqs. (44) and (53) for the true stress and tangent modulus, a user subroutine is 

coded in the format of UMAT in ABAQUS. Following Hong et al. [29], the chemical potential is 

mimicked by a temperature-like quantity in the user subroutine, which is set to be a constant in 

the hydrogel at the equilibrium state. Analogous to thermally induced deformation, change of the 

chemical potential leads to swelling deformation of the hydrogel, and stress is induced if it is 

subject to any constraint. Several examples are presented in the next section for homogeneous 

and inhomogeneous swelling of hydrogels under constraints. For convenience, we normalize the 

key quantities as follows: 

TkTNkTNk
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BB

ij
ij

B

μμ
σ

σ === ,,
ˆ

 .     (54) 
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4. Analytical Solutions and Numerical Examples 

In this section, we first consider three simple examples of homogeneous swelling of a 

hydrogel, one without constraint and two with constraint. Numerical results are compared to the 

corresponding analytical solutions as benchmarks for the finite element implementation. Next, 

inhomogeneous swelling of surface-attached hydrogel lines is considered to further emphasize 

the effect of geometric constraint. 

 

4.1. Free, isotropic swelling 

As discussed in Section 2, under no constraint a hydrogel swells isotropically, for which 

the equilibrium swelling ratio λ  can be solved analytically by setting the chemical potential, 

μμ ˆ= , in Eq. (33). Figure 2 plots the equilibrium swelling ratio as a function of the external 

chemical potential for a hydrogel with χ = 0.1 and νN = 10-3.  

 For numerical analysis by the finite element method, an isotropic initial state is used for 

this case, with an arbitrary swelling ratio, 5.1)1(
3

)1(
2

)1(
1 === λλλ . The chemical potential at the 

initial state is calculated analytically from Eq. (33). Then, the chemical potential of the hydrogel 

is increased gradually as the loading parameter in the finite element analysis until 0=μ , and the 

swelling ratio is calculated at each increment. A single three-dimensional 8-node brick element is 

used to model the hydrogel, with all boundaries free of traction. The numerical results are 

compared to the analytical solution in Figure 2, showing excellent agreement. Since the initial 

state is isotropic in this case, both the UHYPER and UMAT subroutines in ABAQUS can be 

used, and they produce identical results.  
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4.2. Anisotropic, homogeneous swelling of a hydrogel thin film 

Next consider a hydrogel thin film bonded to a rigid substrate, which swells preferably in 

the thickness direction due to the constraint in the lateral direction. For a thin film with its 

thickness dimension much smaller than its lateral dimensions, the swelling deformation is 

homogeneous, but anisotropic. Let 1 and 3 be the in-plane coordinates and 2 the out-of-plane 

coordinate. Under the lateral constraint, the principal stretches of the hydrogel thin film are: 

131 == λλ  and 12 >λ . The lateral constraint induces a biaxial compressive stress in the film, i.e., 

031 <== sss , while the other principal stress is zero, i.e., 02 =s , as the top surface of the film 

is assumed to be traction free. The osmotic pressure in the hydrogel thin film is obtained from 

the second of Eq. (32) as 

⎟⎟
⎠

⎞
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−=Π

2
2

1
λ

λTNkB ,        (55) 

The chemical potential is then obtained from Eq. (31) as 
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where the condition of molecular incompressibility, 12 −= λνC , has been incorporated. Thus, by 

setting μμ ˆ=  in Eq. (56), we can solve for the equilibrium swelling ratio 2λ  for the hydrogel 

film as a function of the external chemical potential. The swelling induced stress in the hydrogel 

film is then obtained from the first and third of Eq. (32) as 

( )12
231 −−=== λTNksss B .       (57) 

The analytical solutions for the swelling ratio and the true stress ( 2/λσ s= ) are plotted in 

Fig. 3 for a hydrogel film with χ = 0.1 and Nv = 10-3. The equilibrium swelling ratio at 

0ˆ == μμ  is 696.72 =λ . Compared to the isotropic, free swelling (λ = 3.390 and 
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96.383 == λJ ), while the linear stretch in the thickness direction of the film is larger, the 

volume ratio of swelling is much smaller for the hydrogel film ( 696.72 == λJ ), as a result of 

the lateral constraint.  

To apply the finite element method for the anisotropic swelling of a hydrogel film, an 

anisotropic initial state is used, with 1)1(
3

)1(
1 == λλ  and 5.1)1(

2 =λ . The chemical potential at the 

initial state is calculated analytically from Eq. (56). In addition, the swelling-induced stress at the 

initial state is obtained from Eq. (57) and specified by a user subroutine SIGNI in ABAQUS [47]. 

Either three-dimensional brick elements or two-dimensional plane-strain elements can be used to 

model the hydrogel film. The lateral constraint on swelling is enforced by the boundary 

conditions. The numerical results are compared to the analytical solutions in Fig. 3, with 

excellent agreements for both the swelling ratios and the induced stresses as the chemical 

potential increases.
 

A similar problem was considered by Hong et al. [29] using a UHYPER material 

subroutine. There, an isotropic initial state with 5.1)1(
3

)1(
2

)1(
1 === λλλ  was used, which relaxed the 

effect of lateral constraint. The corresponding chemical potential at the isotropic initial state was 

obtained from eq. (33) instead of Eq. (56), and no initial stress was induced. While the 

subsequent swelling was constrained in the lateral directions, their results are different from the 

present ones, as shown in Fig. 3. In particular, with the use of an isotropic initial state, the results 

(both swelling ratio and induced stress) for the subsequent swelling under the lateral constraint 

would depend on the choice of the initial state, and the corresponding analytical solution is 

different from that in Eqs. (55)-(57). With the UMAT implementation and an anisotropic initial 

state, the present results are independent of the initial state. 
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Experimental observations of the swelling behavior of hydrogel thin films have shown 

good agreements with the theoretical predictions [4, 9]. However, at high degrees of swelling, 

the homogeneous deformation becomes unstable and gives way to inhomogeneous deformation 

in form of surface wrinkles or creases [9, 10, 12, 15, 16]. In the present study, a similar surface 

instability is observed in numerical simulations for inhomogeneous swelling of surface-attached 

hydrogel lines in Section 4.4. 

 

4.3. Anisotropic, homogeneous swelling of a hydrogel line 

As another example, we consider swelling of a hydrogel line. Assume that the 

longitudinal dimension of the line is much larger than its lateral dimensions. Swelling of such a 

long line is constrained in the longitudinal direction, and thus 13 =λ . On the other hand, swelling 

in the lateral directions is unconstrained and isotropic, with 121 >== λλλ . Such a constrained 

swelling induces a compressive longitudinal stress in the line: 03 <s , whereas 021 == ss . From 

the first and second of Eq. (32), the osmotic pressure in the hydrogel line is 

⎟
⎠
⎞

⎜
⎝
⎛ −=Π 2

11
λ

TNkB .      (58) 

The chemical potential in the hydrogel line is obtained from Eq. (31) as 
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where the condition of molecular incompressibility, 12 −= λνC , has been applied. Thus, by 

setting μμ ˆ=  in Eq. (59), we can solve for the equilibrium swelling ratio λ  in the lateral 

direction for the hydrogel line as a function of the external chemical potential. The swelling 

induced longitudinal stress in the hydrogel line is then obtained from the third of Eq. (32) as 
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( )12
3 −−= λTNks B .      (60) 

The analytical solutions for the swelling ratio and the true stress ( 2
33 /λσ s= ) are plotted 

in Fig. 4 for a hydrogel line with χ = 0.1 and Nv = 10-3. The equilibrium swelling ratio of the 

hydrogel line at 0ˆ == μμ  is λ = 4.573, and the volume swelling ratio is 92.202 == λJ . Since 

the longitudinal constraint (1D) in the hydrogel line is weaker than the lateral constraint (2D) in 

the hydrogel film, the volume ratio of the line is greater than that of the film ( 696.72 == λJ ), 

but still smaller than that of the unconstrained, isotropic swelling ( 96.383 == λJ ).  

For numerical simulations, we assume an anisotropic initial state, with 1)1(
3 =λ and an 

arbitrary swelling ratio in the lateral directions, 5.1)1(
2

)1(
1 == λλ . The chemical potential at the 

initial state is calculated analytically from Eq. (59), and the swelling-induced stress at the initial 

state, obtained from Eq. (60), is specified by a user subroutine SIGNI in ABAQUS. The 

longitudinal constraint on swelling of the line is conveniently imposed by the plane-strain 

condition in the finite element analysis using the two-dimensional 4-node plane-strain elements, 

with traction-free boundary conditions on the side faces. As shown in Fig. 4, the numerical 

results agree closely with the analytical solutions for both the swelling ratios and the longitudinal 

stresses, independent of the choice of the auxiliary initial state.  

 

4.4. Inhomogeneous swelling of surface-attached hydrogel lines 

In this section, we consider swelling of hydrogel lines bonded to a rigid substrate. 

Polymer lines of this type are commonly used in lithography and imprinting processes for 

micro/nano-fabrication [13, 48], where large swelling deformation can be detrimental. Similar to 

the previous section, the longitudinal dimension of the line is assumed to be much larger than its 
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lateral dimensions so that swelling is constrained in the longitudinal direction with 13 =λ . In 

addition, the line has a rectangular cross section at the dry state, with one of the side faces 

bonded to the substrate, as shown in Fig. 5(a). The bonding imposes an additional constraint on 

the lateral swelling of the line, and the effect of the constraint varies with the width-to-height 

aspect ratio (W/H) of its cross section. Swelling deformation of such a surface-attached hydrogel 

line is typically inhomogeneous, which offers a model system for the study of the constraint 

effect between two homogeneous limits: (i) When ∞→HW / , the swelling becomes 

homogenous, as discussed in Section 4.2 for a hydrogel thin film; (ii) When 0/ →HW , the 

lateral constraint by the substrate becomes negligible, and the swelling becomes homogeneous 

and laterally isotropic, as discussed in Section 4.3 for a unattached hydrogel line.  

Except for the two limiting cases, no analytical solution is available for inhomogeneous 

swelling of the surface-attached hydrogel lines. To apply the finite element method, we start 

from an anisotropic initial state of homogeneous swelling with 1)1(
3

)1(
1 == λλ  and an arbitrarily 

selected swelling ratio in the height direction of the line, e.g., 2)1(
2 =λ  as shown in Fig. 5(b). Such 

an initial state is identical to that for homogeneous swelling of a hydrogel thin film in Section 4.2, 

for which the chemical potential ( 1μμ = ) can be analytically calculated from Eq. (56). With 

1)1(
3

)1(
1 == λλ , the longitudinal constraint is maintained and the essential boundary condition at 

the bottom face of the line is satisfied at the initial state. However, the lateral constraint ( 1)1(
1 =λ ) 

imposes a compressive stress (or pressure p) onto the side faces of the line, as given in Eq. (57), 

which apparently violates the traction-free (natural) boundary condition of the intended problem. 

To recover the traction-free condition on the side faces of the line, we gradually release the 

imposed side pressure in Fig. 5(b) during the first step of numerical simulation, while keeping 

the chemical potential in the hydrogel unchanged. As illustrated in Fig. 5(c), the release of the 
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side pressure leads to an inhomogeneous deformation of the hydrogel line at the initial chemical 

potential ( 1μμ = ). Subsequently, further swelling of the hydrogel line is simulated by gradually 

increasing the chemical potential until 0=μ , as shown in Fig. 5(d). We emphasize that the 

current implementation requires a homogeneously swollen initial state, while the mechanical 

boundary conditions may be controlled to facilitate the implementation. Due to the singularity in 

the chemical potential at the dry state, direct simulation from Fig. 5(a) to Fig. 5(d) is numerically 

intractable.   

In all simulations of the present study, the dimensionless material parameters, Nv and χ, 

are set to be 0.001 and 0.1, respectively. The dry-state width-to-height aspect ratio (W/H) is 

varied between 0.1 and 12. A relatively fine finite-element mesh is required for simulating 

inhomogeneous swelling deformation, especially at locations such as the lower corners where a 

high strain gradient is expected. The use of two-dimensional plane-strain elements is thus 

warranted by both the computational efficiency and the longitudinal constraint ( 13 =λ ). For each 

model, the finite element mesh is refined until the result converges satisfactorily. The bonding of 

the bottom face of the hydrogel line to the rigid substrate is mimicked by applying a zero-

displacement (essential) boundary condition; debonding of the line is possible but not considered 

in the present study. Furthermore, the large deformation due to swelling often results in contact 

of the side faces of the hydrogel line with the substrate surface, for which hard and frictionless 

contact properties are assumed in the numerical simulations. 

Figure 6(a) plots the average longitudinal stress as a function of the chemical potential for 

two hydrogel lines with W/H = 1 and 10. The analytical solutions at the two limiting cases are 

also plotted as the upper and lower bounds. At the initial state, we have 2.1)1(
2 =λ  and the 

corresponding chemical potential, 8886.01 −=μ . The initial longitudinal stress is identical to that 
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in a hydrogel film ( ∞→HW / ), which can be obtained from Eq. (57) and lies on the solid line 

in Fig. 6(a). Upon release of the side pressure at the initial state, the magnitude of the average 

longitudinal stress is reduced while the chemical potential remains at the initial value. From the 

same initial state, the reduced stress magnitudes are different for the two hydrogel lines, higher 

in the line with W/H = 10 than that in the line with W/H = 1, due to stronger constraint in the line 

with the larger aspect ratio. Subsequently, as the chemical potential increases, the magnitudes of 

the average longitudinal stress in both the hydrogel lines increase. All the numerical results lie 

between the two homogeneous limits, while the stress magnitude increases with the aspect ratio 

W/H at the same chemical potential. 

Figure 6(b) plots the volume ratios of swelling for the two hydrogel lines as the chemical 

potential approaches 0=μ . The volume ratios increase as the chemical potential increases. The 

difference in the volume ratios of the two lines is less appreciable until the chemical potential is 

close to zero. Again, the two analytical limits set the upper and lower bounds for the volume 

swelling ratios of the surface-attached hydrogel lines. The larger the aspect ratio W/H, the 

stronger the constraint effect and thus the smaller the volume ratio of swelling at the same 

chemical potential.  

The inhomogeneous swelling deformation along with the distribution of the longitudinal 

stress at the equilibrium chemical potential μ = 0 is plotted in Fig. 7 for three hydrogel lines with 

W/H = 1, 5, and 10. For each line, the cross section at the dry state is outlined by a small 

rectangular box. The large swelling deformation pushes the side faces of the hydrogel lines to 

form contact with the rigid substrate surface. The contact length increases as the aspect ratio 

increases, reaching a full contact of the side faces for the hydrogel line with W/H = 10. The stress 

contours show stress concentration at the bottom corners, where debonding may occur. We note 
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that the magnitude of the stress in Fig. 7 is normalized by NkBT, which is typically in the range of 

104~107 Pa for polymeric hydrogels at the room temperature. 

To further illustrate the effect of geometric constraint on swelling, Figure 8 plots the 

equilibrium swelling ratio at μ = 0 as a function of the dry-state width-to-height aspect ratio 

(W/H) of the hydrogel lines. The two analytical limits are plotted as dashed lines. As the aspect 

ratio decreases, the effect of constraint by the substrate diminishes, and the volume ratio 

approaches that for the homogeneous swelling of a hydrogel line without any lateral constraint 

(upper bound). On the other hand, as the aspect ratio increases, the volume ratio decreases due to 

increasing constraint by the substrate, approaching the other limit for the homogeneous swelling 

of a hydrogel film (lower bound). Therefore, the degree of swelling can be tuned between the 

two homogeneous limits by varying the geometric aspect ratio of the surface-attached hydrogel 

lines.  

 As the aspect ratio W/H increases beyond 10, swelling deformation of the hydrogel line 

becomes highly constrained and induces an increasingly large compressive stress at the top 

surface. It is found that, at a critical aspect ratio, a surface instability develops, as shown in Fig. 9 

for W/H = 12. As the chemical potential increases, the top surface of the hydrogel line evolves 

from nearly flat to slightly undulated, and eventually forms two crease-like foldings with self-

contact. The stress contours show stress concentration at the tip of the creases. More creases are 

observed in the simulation for a hydrogel line with the aspect ratio W/H = 13. However, the 

numerical simulation becomes increasingly unstable with formation of the surface creases, 

posing a numerical challenge for simulations of hydrogel lines with higher aspect ratios. It is also 

noted that the contact of the side faces of the hydrogel line with the substrate surface plays an 

important role giving rise to the compressive stresses in the hydrogel. In simulations without 
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enforcing the contact, the hydrogel line swelled more significantly and wrapped around the 

bottom surface until penetration or self contact, while surface creases were not observed. 

 Formation of surface creases has been observed experimentally in swelling gels [9, 10, 12, 

16] as well as in rubbers under mechanical compression [49, 50]. A linear perturbation analysis 

by Biot [51] showed that homogeneous deformation of a rubber under compression becomes 

unstable at a critical strain, which is about 0.46 under plane-strain compression and about 0.33 

under equi-biaxial compression. However, the theoretical prediction for the plane-strain 

compression was found to exceed the experimentally determined critical strain (~0.35) for 

rubbers [49]. In a recent experimental study of surface-attached hydrogel thin films [16], an 

effective linear compressive strain of ~0.33 was obtained for the onset of creasing in laterally 

constrained hydrogels. While this effective critical strain is remarkably close to Biot’s prediction 

for rubbers under equi-biaxial compression, the critical condition for the onset of swell-induced 

creasing in hydrogels has not been established theoretically. A few recent efforts are noted [52, 

53]. The present study of the surface-attached hydrogel lines offers an alternative approach. 

Typically for theoretical and numerical studies of surface instability, it is necessary to introduce 

perturbations to the reference homogeneous solution to trigger the instability. In the present 

study, surface creases form automatically in the numerical simulations for hydrogel lines beyond 

the critical aspect ratio, without any perturbation. Our numerical simulations show that the 

critical aspect ratio for the onset of surface instability depends on the external chemical potential 

and the material parameters of the hydrogel, i.e., ( ) ( )χμ ,,/ NvfHW c = . Therefore, the critical 

condition for surface instability in a laterally constrained hydrogel film ( ∞→HW / ) can be 

expressed in terms of the same parameters: if ( ) ∞<χμ ,, Nvf , the film surface is unstable; 

otherwise, the film surface is stable. A detailed stability analysis will be presented elsewhere. 
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5. Summary 

We have formulated a general variational approach for equilibrium analysis of swelling 

deformation of hydrogels. The governing equations for mechanical and chemical equilibrium are 

obtained along with the boundary conditions. A specific material model is adopted based on a 

free energy density function. A finite element method for numerical analysis is developed, which 

allows anisotropic initial states for the study of swelling of hydrogels under constraints. 

Numerical results by the finite element method are compared to analytical solutions for 

homogeneous swelling of hydrogels, both without and with constraint. The close agreements 

demonstrate the robustness of the present approach. Inhomogeneous swelling of hydrogel lines 

attached to a rigid substrate is simulated, illustrating the effect of geometric constraint with 

different width-to-height aspect ratios. Of particular interest is the formation of swelling-induced 

surface creases in the hydrogel lines beyond a critical aspect ratio. The present theoretical and 

numerical method can be used to study the complex swelling behavior of polymeric hydrogels 

under various geometric constraints, including buckling and creasing instabilities as observed in 

experiments [9-17].  
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Figure Captions 
 
Figure 1. Schematic illustration of the reference state (dry) and the equilibrium state (swollen) of 
a hydrogel, along with an auxiliary initial state used in numerical simulations.  
 
Figure 2. Comparison between numerical results and the analytical solution for free, isotropic 
swelling of a hydrogel. 
 
Figure 3. Anisotropic swelling of a hydrogel film under lateral constraint: (a) the swelling ratio 
in the thickness direction; (b) swelling induced true stress in the lateral direction. Numerical 
results from two different implementations (UMAT and UHYPER) are compared to the 
analytical solution in Eqs. (56) and (57). Note that the results from UHYPER correspond to a 
different analytical solution with an isotropic initial swelling [29]. 
 
Figure 4. Anisotropic swelling of a hydrogel line under longitudinal constraint: (a) the swelling 
ratio in the lateral direction; (b) swelling induced true stress in the longitudinal direction. 
 
Figure 5. Numerical steps to simulate inhomogeneous swelling of a hydrogel line (W/H = 1) 
attached to a rigid substrate: (a) the dry state; (b) the initial state; (c) deformation after releasing 
the side pressure in (b); (d) equilibrium swelling at 0=μ , with the dashed box as the scaled dry 
state. 
 
Figure 6. Inhomogeneous swelling of surface-attached hydrogel lines: (a) average longitudinal 
stress; (b) volume ratio of swelling. The solid and dashed lines are analytical solutions for the 
homogeneous limits with ∞→HW /  and 0/ →HW , respectively. 
 
Figure 7. Simulated swelling deformation and longitudinal stress distribution in surface-attached 
hydrogel lines of different aspect ratios: (a) W/H = 1; (b) W/H = 5; (c) W/H = 10. The rectangular 
boxes outline the cross sections at the dry state. 
 
Figure 8. Equilibrium volume ratio as a function of the dry-state width-to-height aspect ratio for 
inhomogeneous swelling of surface-attached hydrogel lines. 
 
Figure 9. Formation of surface creases in a surface-attached hydrogel line with W/H = 12 as the 
chemical potential increases: (a) 00075.0−=μ , (b) 0003.0−=μ , and (c) 0=μ . 
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Figure 1. Schematic illustration of the reference state (dry) and the equilibrium state (swollen) of 
a hydrogel, along with an auxiliary initial state used in numerical simulations.  
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Figure 2. Comparison between numerical results and the analytical solution for free, isotropic 
swelling of a hydrogel. 
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(a) 
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Figure 3. Anisotropic swelling of a hydrogel film under lateral constraint: (a) the swelling ratio 
in the thickness direction; (b) swelling induced true stress in the lateral direction. Numerical 
results from two different implementations (UMAT and UHYPER) are compared to the 
analytical solution in Eqs. (56) and (57). Note that the results from UHYPER correspond to a 
different analytical solution with an isotropic initial swelling [29].  
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Figure 4. Anisotropic swelling of a hydrogel line under longitudinal constraint: (a) the swelling 
ratio in the lateral direction; (b) swelling induced true stress in the longitudinal direction. 
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Figure 5. Numerical steps to simulate inhomogeneous swelling of a hydrogel line (W/H = 1) 
attached to a rigid substrate: (a) the dry state; (b) the initial state; (c) deformation after releasing 
the side pressure in (b); (d) equilibrium swelling at 0=μ , with the dashed box as the scaled dry 
state. 
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Figure 6. Inhomogeneous swelling of surface-attached hydrogel lines: (a) average longitudinal 
stress; (b) volume ratio of swelling. The solid and dashed lines are analytical solutions for the 
homogeneous limits with ∞→HW /  and 0/ →HW , respectively. 
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Figure 7. Simulated swelling deformation and longitudinal stress distribution in surface-attached 
hydrogel lines of different aspect ratios: (a) W/H = 1; (b) W/H = 5; (c) W/H = 10. The rectangular 
boxes outline the cross sections at the dry state. 
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Figure 8. Equilibrium volume ratio as a function of the dry-state width-to-height aspect ratio for 
inhomogeneous swelling of surface-attached hydrogel lines. 
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Figure 9. Formation of surface creases in a surface-attached hydrogel line with W/H = 12 as the 
chemical potential increases: (a) 00075.0−=μ , (b) 0003.0−=μ , and (c) 0=μ . 


