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A note on the variation of specific heats in ideal gases 
 
Most diatomic gases such as nitrogen (N2) and oxygen (O2) at or near room temperature have 
specific heats (cv and cp) that are almost constant. However, as the temperature (T) rises above 
about 700 K, the specific heat begins to rise. Because the relation  
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remains valid, where R is the gas constant, it is sufficient to discuss (and calculate) the variation 
of one of the specific heats with T. We shall talk about cv in this note. 
 
In the following discussion all energies are mass specific, i.e. expressed per unit mass, and 
denoted by lower case quantities. Energies per mole are obtained by multiplying mass specific 
by the molar mass. In equations that contain the particular gas constant R, the molar energy is 
obatined by substituting the universal gas constant R̂  for R. 
 
Recall that "specific heat" is a somewhat misleading term that dates back to the time when heat 
was viewed as a fluid that could be held by a material, hence terms like specific heat, heat 
capacity, etc. Today we know that "heat" and "work" should always be understood as "heat 
transfer" and "work transfer" because each is an energy transfer. Heat transfer is energy  transfer 
with entropy transfer; work transfer is energy transfer without entropy transfer. This is the only 
way one can distinguish reliably between heat and work transfers.  
 
The precise technical definitions of specific heat are 
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cv measures the rate of change of internal energy, u, with T. The internal energy u of any 
substance is the energy stored in the molecules. In an ideal gas, the molecules are far apart on the 
average, and the internal energy depends only on the energy stored in individual molecules, and 
not on the separation between molecules. More precisely, the molecules are usually so far apart, 
and spend so little time close to each other when they do collide, that the potential energy 
associated with changing their average separation is negligible. If the energy did depend on the 
average separation of molecules (i.e. the density), as it does in liquids and gases, then u = u(T,ρ), 
whereas in an ideal gas u ≠ u(ρ). Thus, for ideal gases the partial derivatives above, become 
ordinary derivatives: 
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For an ideal gas the internal energy is the sum of the kinetic energy of motion of the center of 
mass of each individual molecule and the energy of motion relative to this center of mass. Even 
if the bulk gas is at rest, the (centers of mass of) individual molecules are in constant chaotic 
motion - that is sometimes referred to as the thermal energy. In fact, in non-equilibrium 
situations, the temperature is often defined by the average kinetic energy of random motion of 
the molecules, etr. 
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For most diatomic molecules the rotation of the nuclei give the molecules an average rotational 
energy erot that is given by 
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(Hydrogen gas at low temperatures is an exception important in propulsion systems.) If we 
assume that the internal energy is the sum of these two contributions 
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These results were first known from experiment, and were then explained by classical statistical 
mechanics which predicted that at equilibrium each "degree of freedom" would contribute 1/2RT 
to the internal energy. Thus translation has three degrees of freedom because the molecule can 
move in 3-dimensional space, and a diatomic molecule has two additional degrees of freedom 
because it can rotate about two orthogonal axes. (There is only a very small moment of inertia 
about the internuclear axis, so no energy can be stored in rotation about this axis.) In this model 
the nuclei are assumed to be effectively connected by a rigid massless rod, so the molecule 
looked like a tiny dumbell.  
 
However, classical statistical mechanics could not deal with the observed increase in specific 
heat at high temperature. If it was assumed that the nuclei were not rigidly connected but could 
vibrate, then one would have to admit two additional degrees of freedom to the system (potential 
and kinetic energy of the oscillation) at all temperatures (not just high temperatures). In the 
classical model 
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Unfortunately, none of these predictions is in agreement with experiment, and the discovery that 
there were free electrons in atoms made the situation worse, because now the energy of the 
electrons in the molecule, eel, had to be accounted for too: 

u = etr+ erot+ evib + eel. 
The difficulties were only resolved with the introduction of quantum theory. Briefly, (and very 
crudely) quantum theory explains that, just as matter comes in minimum sized packets called 
atoms, energy and angular momentum come in packets too. Packets of energy are called quanta, 
and the size of an energy quantum depends on the kind of energy you are dealing with. The 
quanta of molecular translational energy are invariably so small that the "graininess" is not 
apparent, and the translational energy of individual molecules can be treated as continuous, and 
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we have "classical" behavior, i.e. negligible quantum effects. (In an analogous way the atomic 
graininess of matter is usually not apparent when matter is treated in bulk and we use the 
continuum approximation.)  
 
In order to speak quantitatively it is convenient to use a characteristic temperature θ to describe 
the size of a reference quantum of energy, ε = kθ, where k is Boltzmann's constant 
(1.38×10-23J/K). Note that the quanta usually vary in size, and θ is used to describe a typical 
value; the energy quanta are scaled to it depending on one or more quantum numbers. If T>>θ , 
then that type of energy can be well described by classical mechanics, but if T~θ then non-
classical effects are significant, and quantum mechanics must be used for an accurate 
description. The following table gives typical values of θ for each different type of molecular 
energy – the precise value depends on the properties of the atoms making up the molecule. 
 
Energy type Value of θ 
Translation, θtr <<10–10K (depends on molecular mass and size of the gas container; the larger 

the containment volume the smaller the value of θ tr) 
Rotation, θrot ~0.5 – 2K (except 85K for H2) 
Vibration, θvib ~1000 – 3000K for most diatomics 
Electronic, θel ~10,000 – 100,000K 
 
The miniscule typical value of θtr emphasizes that quantum effects in translation are completely 
negligible at ordinary temperatures, unless the molecule is confined in a container of atomic 
dimensions like a very thin film. Hence etr= 3/2RT. We see that rotational quanta are also quite 
small, so that at ordinary temperatures, rotation also behaves classically, i.e. erot=RT. (Hydrogen 
gas is the common exception, and quantum mechanics explains why it is unusual.)  However, the 
vibrational quanta are usually large and electronic quanta are even bigger. Hence they behave 
non-classically.  
 
To predict the vibrational energy and the corresponding vibrational specific heat one needs a 
model for the molecular vibration. If, as a simple approximation, one assumes that the molecule 
vibrates like a simple harmonic oscillator, then quantum mechanics predicts that any single 
molecule can have εvib = 0, kθvib, 2 kθvib, 3 kθvib, …but no other values. Statistical mechanics 
predicts the precise probability that a randomly chosen molecule will have any one of these 
energies. It also predicts that the average vibrational energy per unit mass of a collection of such 
harmonic oscillators evib is given by: 
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Correspondingly, 
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For temperatures up to about 3000 K, one can assume that the energy quanta required for 
electronic excitation are so large that there is effectively no electronic energy. Thus eel = 0 at all 
T of interest, and the corresponding electronic specific heat is also 0. 
 
Finally, one can assemble all these results for the specific heats of a diatomic molecule: 

( ) ( )

( )

2

22

2/sinh
2/

2
7

2/sinh
2/

2
50

2/sinh
2/

2
3

⎥
⎦

⎤
⎢
⎣

⎡
+=+=

⎥
⎦

⎤
⎢
⎣

⎡
+=+⎥

⎦

⎤
⎢
⎣

⎡
++=

+++=+++==

T
T

RRRcc

T
T

RR
T

T
RRR

cccc
dT
de

dT
de

dT
de

dT
de

dT
duc

vib

vib
vp

vib

vib

vib

vib

elvibrottr
elvibrottr

v

θ
θ

θ
θ

θ
θ

 

It is often convenient to write the specific heat as a sum of a low temperature limiting value and 
the vibrational specific heat: 
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These theoretical ideas were used to generate the model used to fit the data for the specific heat 
of air. Because air is a mixture of nitrogen and oxygen, there are two different quantum 
oscillators in air with different values of θvib. However, we only want an approximate fit to the 
data, since in gas turbines the combustion products are not pure air anyway. Hence, a very 
accurate model for cp for high temperature air is not justified for our cycle analyis. The data can 
be satisfactorily fit to the equation: 
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The quantity α is slightly different from unity to compensate for the fact that we are modelling 
two different kinds of quantum oscillators as a single oscillator. Oxygen and nitrogen have 
different values of θvib, and different molar masses (hence different R). This expression for cp(T) 
is simple enough that it can be integrated analytically to give the following expressions for h(T) 
and Δs: 
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In each of these equations the term multiplying α gives the contribution of the vibrational 
specific heat and the other term(s) give the perfect gas (constant specific heat) result. 


