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An Engineer's Guide to Quantized Angular Momentum 

The magnitude of an angular momentum vector j with quantum number j is given by: 

|j| )1()1(
2

+=+= jjjjh
π

; j can take integer or half-integer values only. 

Orbital angular momentum vectors are restricted to integer quantum numbers but spin angular 
momenta may have either integer or half-integer quantum numbers. An angular momentum state 
is not completely specified by the single quantum number j. The projection of the vector j on any 
space-fixed axis (traditionally one uses the z-axis) is also quantized. The magnitude jz is thus an 
additional quantum number. 

mjz = ; where m =j, j-1,…,-j; (2j+1) possible values. 

If space is isotropic (no electric or magnetic fields) then angular momentum states with the same 
j, but different jz have the same energy, i.e. j is (2j+1)-fold degenerate. 

When two angular momenta couple with each other the resultant depends on the orientation of 
the vectors. Since specifying the quantum number j, does not specify the direction, one can get 
several different results when angular momenta of magnitudes j1 and j2 are added. The discussion 
below uses spin as an example of an angular momentum, but the rules are the same for any type 
of angular momentum coupling, i.e. spin-spin, spin-orbit, orbit-orbit, … I use s for spin quantum 
number designation, which is a mnemonic for spin. This is the conventional symbol for 
individual electron spins, nuclear spin quantum numbers are usually designated by I. 

If there are two spins characterized by spin quantum numbers s1 and s2, then the quantum rules 
for adding angular momentum say that the resultant vector has a spin quantum number that 
obeys the following sum rule: 

s = s1 + s2 ⇒ s can have any one of the following values: (s1+s2), (s1+s2-1), (s1+s2-2),...|s1-s2| 

For example, if s1=1, s2=2, then s = 3,2, or 1. Similarly, if s1= 1
2 , s2= 1

2 , then the resultant s = 1 or 
0. In general, the energies of the states with different resultant angular momentum are different, 
although differences may be small.  

When angular momenta with quantum numbers s1 and s2 couple, then there are (2s1+1)(2s2+1) 
possible combinations, corresponding to the different possible orientations of the original two 
vectors (i.e. different values of sz) and remembering that one is doing a vector addition. If you 
compare the (2s+1) fold degeneracy of the angular momenta generated by the sum rule given 
above you find that it matches. 

Specifically, for the example above where s1=1, s2=2, we have (2s1+1)= 3, (2s2+1) = 5, so there 
should be 3×5=15 possible vector combinations. If you use the results of the sum rule for the 
possible results you get:  
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s (2s+1)-fold degeneracy 
3 2×3+1 = 7  
2 2×2+1 = 5  
1 2×1+1 = 3 
Total  15 

 

Similarly, if s1=s2= 2
1  then (2s+1) =2 (corresponding to sz = ±

2
1  spin "up" or "down") there 

should be 2×2=4 combinations. Again:  
s (2s+1)-fold degeneracy 
1 2×1+1 = 3 
0 0×2+1 = 1  
Total  4 

 

Finally, if the particles are identical, and the angular momentum quantum numbers are the same, 
then the vector combinations can also be examined for their symmetry with respect to exchange 
of these identical particles. If s1=s2=s then there are: 

(s+1)(2s+1) combinations that are symmetric, and  

      s(2s+1) combinations that are anti-symmetric  

with respect to exchange of identical particles. Returning to the s1=s2= 1
2  example,  

there are (
2
1 +1)×(2×

2
1 +1) = 3 symmetric combinations, and (you do the math) 1 anti-symmetric 

combination. Incidentally, don't be fooled by the coincidence of 3 and 1 with the values in the 
table above. The (s1+s2) = 0 combination is symmetric; two other symmetric states and one anti-
symmetric state are obtained from the three (s1+s2) = 1 states. 

One final example, you work out the details: s1=s2=1. The resultant (s1+s2) = 2, 1, or 0. There are 
3×3=9 individual spin quantum states possible, distributed 5, 3, and 1 between (s1+s2) = 2, 1, and 
0 respectively. If these are identical bosons, e.g. 14N nuclei, then we must distinguish symmetry 
of the combinations. There are 6 symmetric and 3 anti-symmetric spin quantum states that can be 
formed. 

The symmetric and anti-symmetric spin combinations are associated with symmetric and anti-
symmetric rotational, vibrational, and electronic state descriptions so that the overall description 
is symmetric (for identical bosons) or anti-symmetric (for identical fermions). 
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Rotational states and nuclear spin 

Heteronuclear molecules 

For heteronuclear molecules, e.g. CO, HD, DT, 16O17O, etc. the effects of nuclear spin can be 
safely neglected. They are only needed if one needs to enumerate the total number of microstates 
precisely. For a generic molecule AB with nuclear spins Ia and Ib  respectively, the nuclear spin 
degeneracy gns = (2Ia+1)(2Ib+1) appears as a constant multiplier for the degeneracy of each 
rotational (actually angular momentum) state (it is temperature- and J-independent). Thus the 
rotational partition function can be computed as follows: 

.)12()12()12()12)(12(
)()()(

∑∑∑
−−−

+=+=+++=
J

kT
J

ns
kT

J

J
ns

kT
J

J
barot eJgeJgeJIIQ

εεε

 

The spin degeneracy terms can be factored out of the sum because they are the same for all 
states. Here ε(J) is the energy of rotational state with quantum number J. If one uses a rigid rotor 
approximation for the rotational energy, ε(J) = kθr J(J+1), then: 
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in the usual limit T>>θr. When calculating population fractions in a particular rotational state 
described by quantum number J, we have 

∑∑
−

−

−

−

+

+
=

+

+
=

J

kT
J

kT
J

J

kT
J

ns

kT
J

nsJ

eJ

eJ

eJg

eJg
n

n
)(

)(

)(

)(

)12(

)12(

)12(

)12(
ε

ε

ε

ε

. 

 

Thus the fraction can be computed correctly neglecting the spin degeneracy completely and 
computing the rotational partition function from 

rJ

kT
J

rot
TeJQ
θ

ε

≈+= ∑
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)12( . 

The rotational partition function so computed is too small by the constant factor gns. However, 

since thermodynamic properties depend on T
nQrot

∂
∂  no error is induced by neglecting it. It is 

true that there is an error in absolute entropy associated with enumerating microstates because Ω 
will be undercounted by a factor gns i.e.  

Ωtrue= gns Ωneglecting spin 

However: 

[ ]nsspinneglectingtrue gnnknkS +Ω=Ω=  
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Because n Ωneglecting spin is so large (typically ~1020) the factor  n gns which is invariably ~1 is 
negligible unless one is dealing with systems at temperatures close to absolute zero. In any case 
changes in entropy are correctly calculated because n gns is a constant. 

 

Homonuclear molecules 

For homonuclear molecules, e.g. H2, D2, O2(16O16O), etc. the effects of nuclear spin must be 
considered when computing both the rotational partition function and the fractional populations. 
The overall wave function describing the system must be symmetric with respect to exchange of 
identical bosons and anti-symmetric with respect to exchange of identical fermions. Rotational 
motion of the nuclear framework exchanges the nuclei in space and hence spin-symmetry effects 
affect the rotational states. For the simplest case of a linear diatomic molecule a rotation through 
180° exchanges the nuclear positions.1 The wave function describing the nuclear rotational 
motion must have the correct symmetry for fermions or bosons (or both, e.g. acetylene which is 
H-C≡C-H). For a rotation through 180° the rotational wavefunctions are anti-symmetric (i.e. 
change sign, –) for odd J, and symmetric (i.e. do not change sign, +) for even J. Now the overall 
wavefunction must be symmetric for bosons or anti-symmetric for fermions with respect to the 
exchange of the nuclei (and only the nuclei). However, when the nuclei rotate they carry the 
electrons with them. To bring the electrons back to where they started from, leaving the nuclei 
where they were carried by the rotation (say about the z-axis) one needs two successive 
operations: (i) reflect electrons in xy-plane [(x,y,z) → (x,y,-z)] ; (ii) invert all electrons through 
the origin [(x,y,z) → (-x,-y,-z)]. Explicitly, if the electron coordinates were (xe,ye,ze) initially, then 
the first rotation through 180° about the z-axis gives (xe,ye,ze) → (-xe,-ye,ze). Now (-xe,-ye,ze) 
⎯→⎯ )(i (-xe,-ye,-ze) ⎯→⎯ )(ii  (xe,ye,ze), and the electron is back where it started.  The electron wave 

function designations tell us how the wave function behaves under operations (i) and (ii).  

Usually the electronic ground state has zero resultant electronic orbital angular momentum 
(denoted as a Σ state). In this case the state is designated Σ+ or Σ- depending on whether 
reflection operation (i) leaves the wave function sign unchanged or changed respectively. If the 
charge distribution has a center of symmetry (as it must for homonuclear molecules) then a 
subscript g or u is added to indicate the result of the inversion operation (ii), g for symmetric, and 
u for anti-symmetric. 

                                                 
1 The same general principle applies to more complicated molecules, e.g. in NH3 at equilibrium the three H atoms 
form an equilateral triangle in a plane with the N atom above or below. Hence a rotation through 120° or 240° 
exchanges H atom positions. We will not consider these more complicated cases, but restrict ourselves to 
homonuclear diatomics. 
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 Symmetry 

differentiator 
Degeneracy 
contribution 

Effect on wave 
function 

Nuclear spin, I 
I fixed 

Ortho (symmetric)  
Para (anti-symmetric) 

(I+1)(2I+1) 
   I(2I+1) 

+ 
– 

Rotation, J 
J varies 

Even J 
Odd J 

(2J+1) 
(2J+1) 

+ 
–  

Electronic 
reflection  

+ 
– 

 n a 
 

+ 
– 

Electronic 
inversion  

g 
u 

n a + 
– 

 
Example 1:  

Ground state (X) of N2: +Σ g
1  , nuclei are bosons with I = 1. Because nuclei are bosons the overall 

wavefunction must be symmetric (+) with respect to exchange.  

 

Electronic Nuclear spin Rotation Overall Nuclear spin degeneracy 

(+)×(+)=(+) 

 +      g 

ortho (+) 

para (–) 

Even J (+) 

Odd J (–) 

(+) 

(+) 

(I+1)(2I+1) = 6 (geven) 

  I(2I+1) = 3 (godd) 

 

Example 2: 

Excited (A) state of N2: +Σu
3 , nuclei are bosons with I=1. Because nuclei are bosons the overall 

wavefunction must be symmetric (+) with respect to exchange. 

 

Electronic Nuclear spin Rotation Overall Nuclear spin degeneracy 

(+)×(–)=(–) 

 +     u 

ortho (+) 

para (–) 

Odd J (–) 

Even J (+) 

(+) 

(+) 

(I+1)(2I+1) = 6 (godd) 

  I(2I+1) = 3 (geven) 

Note: In the A  excited state of N2 it is the odd J states that have greater degeneracy. 
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Example 3: 

Ground (X) state of O2: −Σ g
1  , nuclei are bosons with I=0. Because nuclei are bosons the overall 

wavefunction must be symmetric (+) with respect to exchange.  

 

Electronic Nuclear spin Rotation Overall Nuclear spin degeneracy 

(–)×(+)=(–) 

 –     g 

ortho (+) 

para (–) 

Odd J (–) 

Even J (+) 

(+) 

(+) 

(I+1)(2I+1) = 1 (godd) 

  I(2I+1) = 0 (geven) 

 

Example 4: 

Ground (X) state of H2: +Σ g
1 , nuclei are fermions with I=1/2. Because nuclei are fermions the 

overall wavefunction must be anti-symmetric (–) with respect to exchange.  

 

Electronic Nuclear spin Rotation Overall Nuclear spin degeneracy 

(+)×(+)=(+) 

  +    g 

ortho (+) 

para (–) 

Odd J (–) 

Even J (+) 

(–) 

(–) 

(I+1)(2I+1) = 3 (godd) 

  I(2I+1) = 1 (geven) 

 

Partition function calculation 

We assume that only the ground electronic state is significantly populated, so only sums over 
rotational states in the ground electronic state need to be considered. Hence even if excited states 
have different statistics than the ground state, e.g. the A-state of N2, the error in the calculation of 
partition function is insignificant. When computing the rotational partition function one has to 
sum over even and odd J separately because they are multiplied by different nuclear spin 
degeneracies. 
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If one uses a rigid rotor approximation for the rotational energy, ε(J) = kθr J(J+1), and in the 
usual limit T>>θr, then: 
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Hence, in this limit 
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The fractional population in any rotational state is then given by: 
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The numerical value of the fraction 
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oddeven  arising from nuclear spin 

statistics depends on the type of the nucleus (fermion or boson), the nuclear spin quantum 
number, and the electronic state symmetries as discussed above. 

Example 1b: N2 (see Example 1 above) 
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Hence the envelopes of the rotational distribution functions for even- and odd-J are in the ratio 
6:3 i.e., 2:1. The figure below shows a rotational Raman spectrum of N2 measured in our 
laboratory. The relative intensities of individual lines within a branch show the 2:1 intensity 
alteration predicted by the theory. (The strong elastic light scattering at Δν=0 is suppressed with 
an atomic filter). 
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Example 3b: O2 (see Example 3 above) 
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In this case the even-J states are missing entirely because geven=0. 
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Example 4b: H2 (see Example 4 above) 
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Hence the envelopes of the rotational distribution functions for even and odd-J are in the ratio 
1:3. 

States with different nuclear spin symmetry (ortho- and para-) are not easily inter-converted, i.e. 
they do not reach thermodynamic equilibrium with each other, but rather behave as different 
chemical species. Hence if homonuclear diatomic gases are cooled they maintain the ratio of 
ortho- to para- that prevails at high (T>>θr) temperature. This is most obvious for H2 which has 
a large θr (~85 K) and condenses at 20 K at atmospheric pressure. Most other gases have much 
smaller θr (~2 K typically) and are not commonly used in the vapor phase at temperatures where 
T~θr. 

The nuclear spin degeneracy gns must be treated consistently when computing equilibrium 
constants. Suppose, for example, that we are computing Kp for the reaction: 

N2 + O2 → 2 NO , 

with the common isotopes 14N (I=1) and 16O(I=0). If the three-fold nuclear spin degeneracy of 
the NO is neglected, one must only use a factor of 1

2  in the rotational partition functions of N2 

and O2. Conversely, if one uses gns=3×1=3 when calculating NO
r
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ns
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corresponding rotational partition functions of N2 and O2 are 
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When calculating the equilibrium constant the spin factors cancel and we get the same result as 
before: 
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