
ASE 382R.6/ME 381Q.4 Molecular Gas Dynamics

Frequently occuring definite integrals

When dealing with distribution functions, several integrals appear regularly.  The integrals
tabulated in the back of the text are for limits of 0 and ±∞.  When dealing with finite upper (or
lower) bounds a few other intgrals are useful - (1) the error function erf(x) and its complement
erfc(x), and (2) the incomplete gamma function, Γ(j,α).

As noted in Problem II 5.1, the error function is defined by
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The complementary error function is given by

erfc(x) = 1 – erf(x).

Note the following:

erf(–x) = – erf(x)

erf(0) = 0

erf(∞) = 1

Computer subroutines (and even spread-sheet functions) are available for computing erf(x). Sketch
a graph of 

2te− and interpret erf(x) and erfc(x) graphically.

The incomplete gamma function Γ(j,α) arises when evaluating integrals of the form
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Such integrals are often referred to as moments of the distribution function. It is defined by

Γ(j,α) = ∫
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and one can show by direct substitution that
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A recurrence relation exists for the incomplete gamma function that permits one to reduce j in steps
when one wishes to do a numerical calculation.
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For odd powers of v (n odd) in the original integral, j becomes an integer and one finally has to
use:
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Equivalently, using the substitution βv2 = y one could transform the integral to the form
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where m = (n–1)/2 is an integer, and then integrate by parts. For even n, j is half-integral, and the
recurrence relation finally requires one to use
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For the special case α=0 we get the (complete) gamma function, that satisfies the recurrence
relation

Γ(j) = (j–1)Γ(j–1)

which gives the following simple results

Γ(j) = (j–1)! for integer j
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On any test you can leave results directly in terms of Γ(j,α) or erf(a). On homework problems you
should evaluate them numerically to get a feeling for orders of magnitude. The following results
are useful:
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The special case a = 0, is dealt with in Appendix 1 of Vincenti and Kruger.
Occasionally one needs

Γ(0,α) = ∫
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where E1(α) is the exponential integral (a standard integral that is tabulated and available in
computer routines).
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α ; γ = 0.57721 56649… is Euler's constant .


