Molecular Gas Dynamics

Frequently occuring definite integrals

When dealing with distribution functions, several integrals appear regularly. The integrals tabulated in the back of the text are for limits of 0 and $\pm \infty$. When dealing with finite upper (or lower) bounds a few other intgrals are useful - (1) the error function $\operatorname{erf}(x)$ and its complement $\operatorname{erfc}(x)$, and (2) the incomplete gamma function, $\Gamma(j, \alpha)$.

As noted in Problem II 5.1, the error function is defined by

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp \left(-t^{2}\right) d t
$$

The complementary error function is given by

$$
\operatorname{erfc}(x)=1-\operatorname{erf}(x) .
$$

Note the following:

$$
\begin{gathered}
\operatorname{erf}(-x)=-\operatorname{erf}(x) \\
\operatorname{erf}(0)=0 \\
\operatorname{erf}(\infty)=1
\end{gathered}
$$

Computer subroutines (and even spread-sheet functions) are available for computing erf(x). Sketch a graph of $e^{-t^{2}}$ and interpret $\operatorname{erf}(x)$ and $\operatorname{erfc}(x)$ graphically.

The incomplete gamma function $\Gamma(j, \alpha)$ arises when evaluating integrals of the form

$$
\int_{a}^{\infty} v^{n} \exp \left(-\beta v^{2}\right) d v
$$

Such integrals are often referred to as moments of the distribution function. It is defined by

$$
\Gamma(j, \alpha)=\int_{a}^{\infty} x^{j-1} e^{-x} d x
$$

and one can show by direct substitution that

$$
\int_{|a|}^{\infty} v^{n} \exp \left(-\beta v^{2}\right) d v=\frac{1}{2 \beta^{\left(\frac{n+1}{2}\right)}} \Gamma\left(\frac{n+1}{2}, \beta a^{2}\right)
$$

A recurrence relation exists for the incomplete gamma function that permits one to reduce j in steps when one wishes to do a numerical calculation.

$$
\Gamma(j, \alpha)=(j-1) \Gamma(j-1, \alpha)+\alpha^{j-1} e^{-\alpha}
$$

For odd powers of v (n odd) in the original integral, j becomes an integer and one finally has to use:

$$
\Gamma(1, \alpha)=\int_{a}^{\infty} x^{1-1} e^{-x} d x=\int_{a}^{\infty} e^{-x} d x=e^{-\alpha}
$$

Equivalently, using the substitution $\beta v^{2}=y$ one could transform the integral to the form

$$
\int^{\infty} y^{m} e^{-y} d y
$$

where $m=(n-1) / 2$ is an integer, and then integrate by parts. For even n, j is half-integral, and the recurrence relation finally requires one to use

$$
\Gamma(j, \alpha)=\sqrt{\pi} \operatorname{erfc}(\sqrt{\alpha})
$$

For the special case $\alpha=0$ we get the (complete) gamma function, that satisfies the recurrence relation

$$
\Gamma(j)=(j-1) \Gamma(j-1)
$$

which gives the following simple results

$$
\begin{gathered}
\Gamma(j)=(j-1)!\text { for integer } j \\
\Gamma(j)=(j-1)(j-2) \ldots\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)=(j-1)(j-2) \ldots\left(\frac{1}{2}\right) \sqrt{\pi} \text { for half-integer } j
\end{gathered}
$$

On any test you can leave results directly in terms of $\Gamma(j, \alpha)$ or $\operatorname{erf}(a)$. On homework problems you should evaluate them numerically to get a feeling for orders of magnitude. The following results are useful:

$$
\begin{gathered}
\int_{ \pm a}^{\infty} \exp \left(-\beta v^{2}\right) d v=\frac{\pi^{1 / 2}}{2 \beta^{1 / 2}}\{1 \pm \operatorname{erf}(\sqrt{\beta} \mathrm{a}\} \\
\int_{ \pm a}^{\infty} v \exp \left(-\beta v^{2}\right) d v=\frac{\exp \left(-\beta a^{2}\right)}{2 \beta} \\
\int_{ \pm a}^{\infty} v^{2} \exp \left(-\beta v^{2}\right) d v=\frac{\pi^{1 / 2}}{4 \beta^{3 / 2}}\left\{1 \pm \operatorname{erf}(\sqrt{\beta} a\} \pm \frac{(\sqrt{\beta} a) \exp \left(-\beta a^{2}\right)}{2 \beta^{3 / 2}}\right. \\
\int_{ \pm a}^{\infty} v^{3} \exp \left(-\beta v^{2}\right) d v=\frac{\exp \left(-\beta a^{2}\right)}{2 \beta^{2}}\left(1+\beta a^{2}\right) \\
\int_{ \pm a}^{\infty} v^{4} \exp \left(-\beta v^{2}\right) d v=\frac{3 \pi^{1 / 2}}{8 \beta^{5 / 2}}\left\{1 \pm \operatorname{erf}(\sqrt{\beta} a\} \pm \frac{(\sqrt{\beta} a) \exp \left(-\beta a^{2}\right)}{2 \beta^{5 / 2}}\left(\frac{3}{2}+\beta a^{2}\right)\right.
\end{gathered}
$$

$$
\int_{ \pm a}^{\infty} v^{5} \exp \left(-\beta v^{2}\right) d v=\frac{\exp \left(-\beta a^{2}\right)}{2 \beta^{3}}\left(2+2 \beta a^{2}+\beta^{2} a^{4}\right)
$$

The special case $a=0$, is dealt with in Appendix 1 of Vincenti and Kruger.
Occasionally one needs

$$
\Gamma(0, \alpha)=\int_{\alpha}^{\infty} \frac{e^{-x}}{x} d x=E_{l}(\alpha)
$$

where $E_{l}(\alpha)$ is the exponential integral (a standard integral that is tabulated and available in computer routines).

$$
E_{1}(\alpha)=\int_{\alpha}^{\infty} \frac{e^{-x}}{x} d x=-\gamma-\ln \alpha-\sum_{n=1}^{\infty} \frac{(-1)^{n} \alpha^{n}}{n n!} ; \gamma=0.5772156649 \ldots \text { is Euler's constant. }
$$

