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Notation 

Throughout this course standard index notation will be used.  The following definitions 
and conventions will be used. 

Kronecker delta (identity tensor): 
  
δ

ij
  

where 
    
δ

ij
= 1  if   i = j  and 

    
δ

ij
= 0  if   i ≠ j  

Permutation tensor: 
  

ijk

  

where 
    

ijk

= 1  if    ijk = 123, 231, 312  (even permutations of 123) 

 
    

ijk

= −1 if    ijk = 321, 132, 213  (odd permutations of 123) 

 
    

ijk

= 0  otherwise 

Vectors:  The vector 
    
A = A

i
e

i
i=1

3

∑  where  Ai
 are the components of  A  in an orthogonal 

Cartesian basis with coordinates  xi
 and associated unit vectors along these coordinate 

directions   ei
.  Use of the Einstein summation convention allows us to use a shorthand 

notation, where the summation symbol is dropped and summation from 1 to 3 is 
assumed over all repeated indices, i.e.     A = A

i
e

i
= A

1
e

1
+ A

2
e

2
+ A

3
e

3
.   

Example, del operator: 
    
∇ = e

1

∂
∂x

1

+ e
2

∂
∂x

2

+ e
3

∂
∂x

3

= e
i

∂
∂x

i

 

Example: 

    

A
i
δ

ij
= A

1
δ

1j
+ A

2
δ

2j
+ A

3
δ

3j

= A
1
 if j = 1

= A
2
 if j = 2

= A
3
 if j = 3

= A
j

 

Dot product:    A ⋅B = A
i
B

i
 

Cross product: 
    
C = A×B⇒C

i
= 

ijk
A

j
B

k
 

Derivatives are represented by a subscript ,j, e.g. 
   

∂A
∂x

i

= A
,i
. 
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Example, divergence: 

     

∇ ⋅A = e
1

∂
∂x

1

+ e
2

∂
∂x

2

+ e
3

∂
∂x

3

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
⋅ A

1
e

1
+ A

2
e

2
+ A

2
e

3( )

= e
i

∂
∂x

i

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
⋅ A

j
e

j( )

=
∂A

j

∂x
i

e
i
⋅ e

j

=
∂A

j

∂x
i

δ
ij

=
∂A

1

∂x
1

+
∂A

2

∂x
2

+
∂A

2

∂x
2

= A
i,i

 

Note that the third line above is only valid for a non-rotating Cartesian basis.  Also 
note that it was necessary to use separate i and j indices on the second line since having 
i appearing 4 times would have no meaning. 

Rotation of basis 
To determine how the components of a given vector change under a rotation of the 
Cartesian coordinate system we note that the vector can be written with reference to 
either system. 

   
A = A

i
e

i
= ′A

j
′e
j
 

    
A ⋅ ′e

j
= A

i
e

i
⋅ ′e

j
= ′A

i
′e
i
⋅ ′e

j
= ′A

i
δ

ij
= ′A

j
 

  
′A
j

= a
ij
A

i
 

Where 
   
a

ij
= e

i
⋅ ′e

j
 is the cosine of the angle between the  xi

 direction and the 
  
′x
j
 

direction.  By performing the dot product of the first equation with 
  
e

j
 and recognizing 

the equivalence with the result of inverting the third equation, it can be shown that 

    
a

ij( )−1
= ′e

i
⋅ e

j
= a

ji
, or    a -1 = aT , and hence  a  is an orthogonal matrix. 

Tensors 
Tensors of arbitrary rank can be represented with dyadic notation.  For example, the 
second rank stress tensor can be written as 

      
σ = σ

ij
e

i
⊗ e

j
.  Transformations of tensor 

components can then be carried out as follows. 
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σ = σ

ij
e

i
⊗ e

j
= ′σ

ij
′e
i
⊗ ′e

j
 

      
′e
k
⋅

σ ⋅ ′e

l
= σ

ij
′e
k
⋅ e

i
⊗ e

j
⋅ ′e

l
= ′σ

ij
′e
k
⋅ ′e

i
⊗ ′e

j
⋅ ′e

l
 

   
′σ
ij
δ

ki
δ

jl
= σ

ij
a

ik
a

jl
 

   
′σ
kl

= a
ik
a

jl
σ

ij
 

This procedure can be applied to tensors of arbitrary rank, 
    
b = b

ijk…p
e

i
⊗ e

j
⊗ e

k
…⊗ e

p
, 

and the transformation formulas for the components follow as, 

   
′b
lmn…q

= a
il
a

jm
a

kn
…a

pq
b

ijk…p
. 
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Electrostatics 

The fundamental quantity in electrostatics is charge.  The purpose of electrostatics is to 
determine the forces and energies of charges given some configuration of their positions.  
The theory of electrostatics can be built from the simple expression for the force 
between two charges. 

Coulomb’s Law: 
      
F

ij
= −

1
4π

0

Q
i
Q

j

r 2
e

ij
 (no summation implied)  

Throughout this section, subscripts will refer to the numbering of charges, not to the 
components of vectors or tensors.  Here,  Qi

 and 
 
Q

j
 are the two charges under 

consideration, 
  
F

ij
 is the force on  Qi

 due to 
 
Q

j
, 

  
e

ij
 is the unit vector in the direction 

from  Qi
 towards 

 
Q

j
,  r  is the distance between the two charges, and   0  is the 

permittivity of free space,    0 = 8.854×10−12  C2/N ⋅m2 .  This expression indicates that 

the force between two charges is inversely proportional to the square of the distance 
between them and directed along the line joining their locations.  Furthermore, the sign 
indicates that like charges repel one another and opposite charges attract one another. 

The force on a given charge due to some set    (1…N ) of other charges is a simple sum of 
the contributions from each charge interaction, i.e. there are no three, four, … N-body 
interactions. 

      

F
i

= F
ij

j =1
j≠i

N

∑ = −
1

4π
0

Q
i
Q

j

r 2
e

ij
j =1
j≠i

N

∑  

Note that a given charge does not contribute a force on itself.   

Next, we would like to compute how much work it takes to set up some distribution of 
charges.  We first recognize that since a charge does not place a force on itself it does 
not take any work to place it at some location in space.  (We will not concern ourselves 
with the fact that the energy of the electric field that the charge sets up is infinite.)  We 
will take the location of this first charge to be the origin of our coordinate system.  Now 
consider bringing a second charge from a distance far from the first charge (formally an 
infinite distance so the force is zero) to its final location.  The increment of work done 
on this charge during some part of this journey is, 

   dW = F ⋅dx  

Setting up a spherical coordinate system centered on   Q1
, the force on the second charge 

and the incremental displacement can be written as, 
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F = −

1
4π

0

Q
1
Q

2

r 2
e

r
 

     
dx = e

r
dr + e

θ
rdθ+ e

φ
r sin θdφ  

Then, the increment of work is simply, 
     
dW = −

1
4π

0

Q
1
Q

2

r 2
dr , and the total work done 

to take this second charge from infinity to its final location is, 

     
W = dW = −

1
4π

0
∞

r

∫∫
Q

1
Q

2

′r 2
d ′r =

1
4π

0

Q
1
Q

2

r
 

Notice that this integral was entirely independent of the path that this second charge 
took to get to its final location.  Hence, it is possible to interpret this total work as the 
change in the potential energy of the second charge.  We define the potential energy of 
two charges as, 

     
V

ij
=

1
4π

0

Q
i
Q

j

r
ij

. 

Here 
 
r
ij
 is the distance between  Qi

 and 
 
Q

j
.  We can now consider bringing a third 

charge into place, and then a fourth and so on.  Since the forces between multiple 
charges are additive, it can be shown that the total work done in this process is simply, 

     

W = 1
2

V
ij

j =1
j≠i

N

∑
i=1

N

∑ =
1

8π
0

Q
i
Q

j

r
ijj =1

j≠i

N

∑
i=1

N

∑  

Note that the factor of 
 
1
2
 arises due to the double counting inherent in the double 

summation process.  Also, this equation suggests, and it is true, that it does not matter 
in which order the charge configuration is set up, i.e. conceptually we can choose any of 
the charges to be the “first” charge.  Returning to the expression for the potential 
energy, it is possible to define the electric potential field that is set up due to a given 
charge as,  

     
φ

i
=

1
4π

0

Q
i

r
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Here  r  must be interpreted as the distance from the charge  Qi
.  Then the potential 

energy can be written as, 

   
V

ij
= φ

i
Q

j
. 

Returning to our expression for the force between two charges and noting that  

       

F
ji

= −∇V
ij

= −∇φ
i

E
i


Q

j

= −
∂φ

i

∂r
e

r
−

1
r

∂φ
i

∂θ
e
θ
−

1
r sin θ

∂φ
i

∂φ
e
φ

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
Q

j

=
1

4π
0

Q
i
Q

j

r 2
e

r
=

1
4π

0

Q
i
Q

j

r 2
e

ij
= −

1
4π

0

Q
i
Q

j

r 2
e

ji

= E
i
Q

j

 

Here we have defined the electric field as the opposite of the gradient of the electric 
potential.  This definition allows us to identify the electric field set up by a point charge 
and rewrite the expression for the force due to this charge on the other charges in the 
system. 

If we know the electric potential field in the vicinity of a given point due to some 
distribution of charges then we can calculate the electric field in this vicinity as 

   E = −∇φ .  If we then place some charge  Q  at this location it will experience a force on 
it given by    F = QE .   

Let’s take a closer look at the vector field  E .  First notice that since the components of 
 E  can be derived from one scalar field  φ , these components cannot be truly 
independent of one another.  In fact, we can show that the vector field  E  must be curl-
free. 

    ∇×E = ∇×∇φ = 0  

This can be demonstrated with index notation as follows (here our indices do represent 
components of vectors). 
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∇×E( )
i

= 
ijk
E

k, j

= −
ijk
φ

,kj
  definition E

i
= −φ

,i

= 
ikj
φ

,kj
  sign change due to change of permutation

= 
ikj
φ

, jk
  change order of differentiation of φ

= 
ijk
φ

,kj
  change dummy indices j ⇒ p ⇒ k, k ⇒ q ⇒ j

= 0        a = -a  ⇒  a = 0

 

Next let’s consider the divergence of the electric field due to an arbitrary distribution of 
charges.  To do this we first consider a single charge and then we can build up the 
arbitrary distribution using superposition.  Consider the integral, 

   
E ⋅n dS

S∫  

where S is some arbitrarily shaped closed surface in space and n is the unit outward 
pointing normal to this surface.  Again, we will consider the contribution to this integral 
from one “piece” of charge  dQ , and we will set up a spherical coordinate system to 
perform the integration. 

      

E ⋅n dS =
1

4π
0

dQ

r 2
e

r
⋅n

r 2

e
r
⋅n

sin θdθ dφ  

The factor of 
    
1/ e

r
⋅n  in the expression for  dS  arises when the normal of the 

differential surface element is inclined with respect to the radial direction.  The 
existence of the absolute value sign suggests two possibilities for our differential element.  
The differential element pyramid crosses the surface an even number of times with 

    
e

r
⋅n / e

r
⋅n  being plus and minus one an equal number of times, or the element crosses 

the surface an odd number of times in which case there is always one more occurrence of 

    
e

r
⋅n / e

r
⋅n = 1 .  The case for the even number of crossings occurs when the surface 

does not enclose the point charge (you must enter and exit the surface n times), and the 
case for the odd number of crossings occurs when the surface does enclose the point 
charge (you must first exit the surface and then you can enter and exit m times).   

Hence, our integral becomes, 

      

E ⋅n dS
S∫ =

dQ
4π

0

sin θdθ
0

π

∫
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟0

2π

∫ dφ =
dQ

0

  if S  encloses dQ

= 0   if S  does not enclose dQ
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We can then perform this same integral for each “piece” of charge, the sum of all of the 
charges enclosed by S denoted as  Qenclosed

.  For a distribution of charges we can now 

write, 

     
E ⋅n dS

S∫ =
Q

enclosed


0

 

If we introduce the concept of a continuous charge distribution with charge density per 
unit volume  q  ( ρ  in many electrostatics texts, but we will use  ρ  for mass density), the 
charge enclosed by a given surface is simply, 

  
Q

enclosed
= q

V∫ dV  

This then gives us, 

     
E ⋅n dS

S∫ =
q

0

dV
V∫  

Applying the divergence theorem to the left-hand side of this equation yields, 

     
∇ ⋅E dV

V∫ =
q

0

dV
V∫   or in index notation  E

i
n

i
dS

S∫ = E
i,i

dV
V∫ =

q

0

dV
V∫  

Finally, this equation must be valid for any and every surface, and the volume that it 
encloses, that we choose.  Given that this volume is arbitrary, the integrands must 
therefore be equivalent. 

     
∇ ⋅E =

q

0

  ⇒   E
i,i

=
q

0

 

This is also referred to as Gauss’ Law.  Finally, we can introduce the electric potential 
once again to obtain a governing partial differential equation for the electric potential. 

     

−∇ ⋅∇φ =
q

0

  ⇒   -φ
,i( )

,i
=

q

0

∇2φ = −
q

0

⇒   φ
,ii

= −
q

0

 

This is of course Poisson’s equation with the source term     −q / 
0
, and in the absence of 

a charge density reduces to Laplace’s equation.  This equation is useful for determining 
the fields in free space around a set of conductors.  We will briefly discuss such 
situations and introduce the boundary conditions imposed on this equation by the 
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conductors.  However, ultimately we are more concerned with the fields in matter.  
Before we get into this let’s take another look at the electrostatic energy. 

      

W = 1
2

V
ij

j =1
j≠i

N

∑
i=1

N

∑ = 1
2

Q
i
φ

j
j =1
j≠i

N

∑

φ(x
i
)


i=1

N

∑ = 1
2

Q
i
φ(x

i
)

i=1

N

∑  

Here     φ(xi
)  is the electric potential that exists at the location of the charge  Qi

 and is 

due to the other charges in the system.  For a continuum distribution of charges we can 
generalize this equation as, 

    
W = 1

2
qφ dV

V∫  

Note that the volume V must at least contain all of the charge in the system.  This can 
then be manipulated with Gauss’ law to obtain, 

     

W = 1
2

qφ dV
V∫

= 1
2

0
E

i,i
φ dV

V∫
= 1

2

0

(E
i
φ)

,i
−E

i
φ

,i
⎡
⎣⎢

⎤
⎦⎥ dV

V∫
= 1

2

0
E

i
E

i
dV

V∫ + 1
2

0
E

i
n

i
φ dS

S∫

 

If there is no charge at infinity then the electric field and electric potential have the 
following characteristics,    Ei

 1/ r 2  and     φ  1/ r , and in the limit as the bounding 

surface becomes infinitely extended the surface integral vanishes and we obtain, 

    
W = 1

2

0
E

i
E

i
dV

all space∫ . 

An apparent contradiction exists between this equation and the previous double 
summation equation for the point charges since this equation must be positive while the 
prior one can be negative.  This difference arises due to the accounting of the 
singularities associated with the point charges themselves which are thrown out in the 
double summation, but do not even exist in a smeared out continuum charge 
distribution.  Consider the electric field and potential due to some distribution of point 
charges. 

      

E(x) =
1

4π
0i=1

N

∑
Q

i
(x− x

i
)

x− x
i

3
  and  φ(x) =

1
4π

0i=1

N

∑
Q

i

x− x
i

 

The energy of this field is then, 
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W = 1
2

0
E ⋅E dV

V∫ + 1
2

0
φE ⋅n dS

S∫

= 1
2

0

Q
i
Q

j

16π2
0
2

(x− x
i
) ⋅(x− x

j
)

x− x
i

3
x− x

j

3
j=1

N

∑
i=1

N

∑ dV
V∫ + 1

2

0

Q
i
Q

j

16π2
0
2

(x− x
i
) ⋅n

x− x
i

3
x− x

j
j=1

N

∑
i=1

N

∑ dS
S∫

 

Recall that this was the rigorous form for W before we made the arguments allowing us 
to take the bounding surface out to infinity. To analyze these integrals we will instead 
take our bounding surface to be small spheres surrounding each charge all connected by 
small tubes.  The integrals around the tubes vanish since there are no singularities in 
these tubes and the surface area and volume of the tubes vanish.  To analyze the 
integrals around the small spheres we note that 

    
x− x

i
= ρe

ρ
 and 

   
x− x

j
⇒ x

i
− x

j
 when 

  i ≠ j  for the sphere surrounding  Qi
. 

       

W = 1
2

0

Q
i
Q

j

16π2
0
2

(x− x
i
) ⋅(x

i
− x

j
)

x− x
i

3
x

i
− x

j

3
j =1

N

∑
i=1

N

∑ dV
V∫ + 1

2

0

Q
i
Q

j

16π2
0
2

(x− x
i
) ⋅n

x− x
i

3
x

i
− x

j
j =1

N

∑
i=1

N

∑ dS
S∫

= 1
2

0

Q
i
Q

j

16π2
0
2

(x
i
− x

j
)

x
i
− x

j

3
⋅ e

ρ
sin ′θ d ′ρ d ′θ d ′φ

ρ,θ,φ∫
0

  j =1
j≠i

N

∑
i=1

N

∑ + 1
2

0

Q
i
Q

i

16π2
0
2

1
′ρ 2

sin ′θ d ′ρ d ′θ d ′φ
ρ,θ,φ∫
−4π / ρ+ 4π / r

ii

  i=1

N

∑

+ 1
2

0

Q
i
Q

j

16π2
0
2

1

x
i
− x

j

sin ′θ d ′θ d ′φ
θ,φ∫

4π
  j =1

j≠i

N

∑
i=1

N

∑ + 1
2

0

Q
i
Q

i

16π2
0
2

1
ρ

sin ′θ d ′θ d ′φ
θ,φ∫

4π / ρ
  i=1

N

∑

=
1

8π
0

Q
i
Q

j

r
ijj =1

N

∑
i=1

N

∑

 

Here we see that this expression agrees with our previous expression for W, except for 
the fact that it also includes the terms when   i = j .  This term is singular since    rii

= 0  

and represents the energy to create the charges themselves.  Since we can assume that 
we are “given” the charges and the energy of the charges does not change, we will not 
concern ourselves with this issue and we can safely remove this energy from our 
considerations.  For the case where there are no point charges and the representation of 
the charge distribution is a continuous field, this problem does not arise. 

We will now discuss boundary conditions for the PDE      ∇
2φ = −q / 

0
 for a set of 

conductors in free space.  The fundamental difference between conductors and insulators 
is that electrons (at least those in the conduction band) are relatively free to move in 
conductors, whereas in insulators they are bound to a specific nucleus.  By “free to 
move” we are implying that if a free electron is exposed to an electrostatic force then it 
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will move in the direction of that force.  This consideration can be used to reveal the 
following conditions: 

1. The electric field inside a conductor is zero, and hence the electric potential of 
a given conductor is constant.  Since a conductor always has charges available 
to move, the existence of any electric field would rearrange the charges until 
the field is nullified.   

2. Since the electric field in the conductor is zero, Gauss’ law implies that the 
charge density inside the conductor is zero.  Therefore, any unbalanced charge 
in a conductor must reside at its surface. 

3. Since the electric potential is a continuous field, and the potential on the 
surface of a conductor is constant, the components of the electric field 
tangential to the conductor must be zero.  Again, if tangential fields did exist, 
then the charges on the surface would move until such fields were cancelled. 

4. Across a layer of surface charge, Gauss’ law can be used to show that the 
jump in the normal component of the electric field is, 

     
E ⋅n =

ω

0

  or with index notation 
     
E

i
n

i
=
ω

0

 

Here  ω  is the surface charge density (sometimes denoted  σ  but we will 
reserve  σ  for stresses).  For this equation  n  is directed out from a conductor.  
If  n  is taken to point out of the region of free space, then a negative sign is 
required.  This supplies the Neumann boundary conditions for the governing 
PDE. 

Example 

Determine the electric field for two infinite cylindrical tubes, one of radius a embedded 
in a second of radius b, both with a common center.  The inner tube is maintained at 
zero potential and the outer tube at   φ0

.  Also determine the charge densities on each 

tube. 

This problem has no volume charge and radial symmetry, so we are faced with solving 
Laplace’s equation with radial symmetry. 

    
∇2φ = 0 ⇒

d 2φ
dr 2

+
1
r

dφ
dr

= 0  

This is an equi-dimensional ordinary differential equation which has the solution form, 

    φ = Arp ⇒ p(p−1)Arp−2 + pAr p−2 = 0 ⇒ p2 = 0  
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The double root at zero implies that the two general solutions are combined as, 

    φ = A + B lnr  

Applying boundary conditions provides the following two algebraic equations required to 
solve for the coefficients A and B. 

    

φ(r = a) = A + B lna = 0
φ(r = b) = A + B lnb = φ

0

⎫
⎬
⎪⎪

⎭⎪⎪
⇒

A = −φ
0
ln(a)/ ln(b /a)

B = φ
0
/ ln(b /a)

 

Finally, our solution can be given as, 

    
φ = φ

0

ln(r /a)
ln(b /a)

  with  
    
E

r
= −

dφ
dr

=
φ

0

ln(b /a)
1
r

 

This is the solution between the two cylinders.  To determine the charge on the 
cylinders we also need the solutions within the inner cylinder and outside the outer 
cylinder.  The solution in these regions still takes the form     φ = A + B lnr .  The inner 
region contains the point    r = 0  and so the coefficient B must be zero.  Furthermore  φ  
is continuous throughout space and so the coefficient A must be equal to zero since this 
inner region shares the boundary at   r = a .  The problem in the outer region is a bit 
more subtle.  If there is a net charge on the two cylinders then the potential far from 
the cylinders cannot be defined, but varies as     φ  lnr  which is singular as   r →∞ .  
This feature arises since the charges on the cylinders extend out infinitely in the axial 
direction of the cylinders.  In any case, this example is for illustrative purposes, so let’s 
assume that there is no net charge on the cylinders.  So, outside of the outer cylinder we 
have the solution   φ = φ

∞
, and the continuity of the electric potential at   r = b  implies 

that    φ∞ = φ
0
.  Then, at   r = a  the jump in the normal component of the electric field is, 

   φ0
a ln(b /a) , and at   r = b  the jump is,     −φ0

b ln(b /a) .  The net charge per unit length 

on the two cylinders is      2πa 0φ0
a ln(b /a)− 2πb 

0
φ

0
b ln(b /a) = 0 .  Note that we had to 

account for the surface area of the two cylinders. 



EM 397 Mechanics of Active Materials 

 13 © Chad M. Landis 2008  

Electrostatic Fields in Matter 

We now turn our attention to electrostatic fields in insulating matter.  The simplest 
situation is to think about how charges move around under the influence of an external 
electric field in a relatively simple material.  The key idea is to realize that all matter is 
in the arrangement of positive charge (nuclei or positive ions) and negative charge (the 
electrons or negative ions).  When an electric field is applied the positive charge tends 
to move in the direction of the electric field and the negative charge moves in the 
opposite direction (at least if the solid is isotropic, in anisotropic solids the charge 
motions can be directed differently).  This change of location of the positive and 
negative charge creates electric dipoles in the material.  Perhaps the simplest system to 
analyze in a qualitative manner is the hydrogen atom in its ground state.  Quantum 
mechanics gives the electron distribution as, 

    
q = −

Q

πa3
e−2r/a  

where Q is the charge of a proton, a is the Bohr radius, and r is the distance from the 
nucleus.  Application of an electric field will tend to perturb the center of this 
distribution away from the nucleus.  To a first approximation we can assume that the 
electron distribution retains its spherically symmetric shape but simply moves a distance 
d away from the nucleus.  The applied electric field of magnitude E tends to push the 
nucleus in one direction, but since it is now off-center the electron cloud pulls the 
nucleus in the opposite direction.  These two forces on the nucleus will balance out 
when the electric field due to the electron cloud at the location of the nucleus is equal 
and opposite to the applied electric field.  Since we are assuming that the electron cloud 
retains its spherical symmetry we can apply Gauss’ law to determine the field. 

     
E ⋅n dS =

Q
enclosed


0

S∫  

      

4πd 2 E
r

= −
4πQ
πa3

0

e−2r/ar 2 dr
0

d

∫ =
Q

a2
0

a2 + 2ar + 2r 2( )e−2r/a ⎤
⎦⎥0

d

=
Q

a2
0

a2 + 2ad + 2d 2( ) 1− 2 d
a

+ 2 d2

a2
− 4

3
d3

a3
+…( )−a2⎡

⎣⎢
⎤
⎦⎥

≈ −
4Qd 3

3a3
0

 for d  a

 

Therefore, 
      
E

r
=
−Qd

3πa3
0

 for d  a . 
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Defining the polarizability as,    p = αE , and    p = Qd e , we get      α = 3πa3
0
.  This is a 

rigorous result for the given static charge density, however a real hydrogen atom has a 
dynamic electron described by Schrödinger’s equation, and the full quantum mechanical 
result is 6 times greater than this qualitative classical model.  In any case the model 
illustrates one mechanism for polarization changes in matter. 

Of course we are not interested in the dipoles created by individual atoms, but rather 
the polarization density for a representative region of material.  A rigorous definition of 
material polarization based on the charge distributions in a sample of matter would at 
first glance seem to be possible.  However, careful considerations of the possible 
definitions make it clear that none are satisfactory.  In fact, in the laboratory it is only 
possible to measure changes in the polarization of a material sample from the current 
passing through the sample,    ΔP = Jdt .  At this juncture we will not concern ourselves 
with such issues, and instead we will assume that we know the distribution of dipoles in 
the material.  The total dipole moment of a volume of material is then just the sum of 
all dipoles contained in that volume. At the continuum level we identify the polarization 
as the density of dipoles per unit volume, such that the dipole moment of the volume 
can be written as, 

   
p = PdV

V∫  

We would like to determine the electrical effects due to some distribution of polarization 
in matter.  We can do this in two ways.  First we will consider the electric potential due 
to some polarization field.  Recall that the potentials at some position x due to a point 
charge or point dipole located at x´ are 

      

V
Q

=
Q

4π
0

1

x - ′x
 

      

V
p

=
1

4π
0

p ⋅ x - ′x( )
x - ′x

3
 

Then, the potential due to a polarization distribution is, 

      

V
P

=
1

4π
0

P ⋅ x - ′x( )
x - ′x

3V∫ d ′V  

Note that, 
   

∂
∂ ′x

i

x
j
− ′x

j( ) x
j
− ′x

j( )⎡
⎣⎢

⎤
⎦⎥
−1 2

= −
1
2
−2( ) x

i
− ′x

i( ) x
j
− ′x

j( ) x
j
− ′x

j( )⎡
⎣⎢

⎤
⎦⎥
−3 2

, or in vector 

notation, 
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′∇
1

x - ′x
=

x - ′x

x - ′x
3
 

      

→V
P

=
1

4π
0

P ⋅ x - ′x( )
x - ′x

3V∫ d ′V =
1

4π
0

P ⋅ ′∇
1

x - ′xV∫ d ′V  

Applying the divergence theorem to this result yields, 

      

VP =
1

4π
0

′∇ ⋅ P 1
x - ′x

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
−

V∫
′∇ ⋅P

x - ′x
d ′V

=
1

4π
0

− ′∇ ⋅P
x - ′xV∫ d ′V +

1
4π

0

P ⋅n
x - ′xS∫ d ′S

=
1

4π
0

q
b

x - ′xV∫ d ′V +
1

4π
0

ω
b

x - ′xS∫ d ′S

 

On the last line we have defined the bound charge density as    qb
= −∇ ⋅P , and the 

bound surface charge density as     ωb
= P ⋅n .  This last line also demonstrates that the 

potential of the polarization distribution can be represented through these associated 
charge distributions.  Finally, if we recognize that it is really only polarization changes 
that can be determined through the measurement of currents, then these two equations 
represent the conservation of charge. 

The physical pictures associated with   ωb
 and  qb

 are as follows.  First, consider a 

material surface inclined to the material polarization.  As the material is poled (note we 
are conceptually considering changes in polarization from some initial state) charge 
separation occurs and at the surface charge appears in an amount that is equal to the 
normal component of the polarization (change).  This accumulation of surface charge is 
exactly     ωb

= P ⋅n .  Next, consider some differential volume element.  The accumulation 

of bound charge within this volume is computed by accounting for the amount of charge 
coming into the volume and then subtracting off the charge leaving the volume. 

  

q
b
dx dydz = P

x
dydz − P

x
+
∂P

x

∂x
dx +O dx

i
dx

j
( )

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
dydz

+P
y
dx dz − P

x
+
∂P

y

∂y
dy +O dx

i
dx

j
( )

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
dx dz

+P
z
dx dy − P

x
+
∂P

z

∂z
dz +O dx

i
dx

j
( )

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
dx dy

 

In the limit that the spatial dimensions of this volume element vanish, this bound 
charge accumulation equation takes the form    qb

= −∇ ⋅P .  We emphasize that bound 
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charge is in fact real charge.  However, it is distinguished from free charge in the sense 
that we have no control over it.  We are able to move free charges around through the 
use of conductors and batteries, but the bound charge distributes itself according to the 
physical behavior of the material. 

Let us now consider how we can use these results to perhaps simplify the equations 
governing the electrostatic fields in matter and the computation of the energy.  First, 
we decompose the total charge densities into free and bound contributions. 

  
q = q

f
+ q

b
  and  

   
ω = ω

f
+ ω

b
 

Gauss’ law in the volume and on a surface become, 

     

0
∇ ⋅E = q

f
+ q

b
  and  

      

0
E ⋅n = −ω

f
−ω

b
 

Here, the unit normal n points out of the material.  Applying the definitions for the 
bound charge densities yields, 

     

0
∇ ⋅E = q

f
−∇ ⋅P   and  

      

0
E ⋅n = −ω

f
−P ⋅n  

Finally, a rearrangement of terms gives, 

     
∇ ⋅ 

0
E + P( ) = q

f
  and  

      

0
E + P( ) ⋅n = −ω

f
 

These equations suggest the definition of a new quantity within the parentheses, 

    D ≡ 0E + P .  The quantity  D  is called the electric displacement, which is governed by 

the balance laws,  

   
∇ ⋅D = q

f
 in V  and  

    
D ⋅n = −ω

f
 on S 

Let’s look at the work done on a dielectric.  Generally we can think of the electrical 
work being done by a battery, and we must recognize that batteries push around free 
charge, and so only do work on the free charges.  Hence, the increment of work done to 
bring a free charge into place is, 

   
δW = φδq

fV∫ dV + φδω
fS∫ dS  

Applying our new balance laws for the electric displacement and manipulating with the 
divergence theorem yields, 
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δW = φ∇⋅δD
V∫ dV − φn ⋅δD

S∫ dV

= ∇⋅ φδD( )− δD ⋅∇φ⎡
⎣⎢

⎤
⎦⎥V∫ dV − φn ⋅δD

S∫ dS

= δD ⋅E
V∫ dV + n ⋅φδD

S∫ dS − φn ⋅δD
S∫ dS

= E ⋅δD
V∫ dV

 

In summary, our most significant results for the electrostatic relationships in matter are, 

   E = −∇φ  
    
E

i
= −φ

,i
 

   ∇ ⋅P = −q
b
 

   
P

i,i
= −q

b
 

    P ⋅n = ω
b
    Pi

n
i

= ω
b
 

    D = 
0
E + P      Di

= 
0
E

i
+ P

i
 

   
∇ ⋅D = q

f
 

   
D

i,i
= q

f
 

    
D ⋅n = −ω

f
 

   
D

i
n

i
= −ω

f
 

    
δW = E ⋅δD

V∫ dV  
   
δW = E

i
δD

iV∫ dV  

Ultimately, these equations are not sufficient for the determination of the electrostatic 
fields in matter.  Specifically, we still need to know the constitutive response of the 
material.  For uncoupled situations this means that we need to know how the electric 
displacement is related to the electric field.  When significant coupling exists in the 
material, the polarization and electric displacement may also depend on the 
temperature, strain, magnetic field and perhaps other variables.  Furthermore, for 
irreversible material response, the constitutive behavior is given only in incremental 
form, such that only the increment (or rate of change) of electric displacement or 
material polarization is specified. 

We will focus on constitutive modeling in more detail at a later time.  For now we will 
look at the simplest relationship between the polarization and electric field, a linear one.  
For a general linear material response the components of the polarization are related to 
the components of the electric field as, 

     
P

i
= 

0
χ

ij
E

j
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The material property  χ  is the second rank tensor of electrical susceptibility.  Given a 
linear electrical susceptibility, the relationship between electric displacement and electric 
field is also linear, and can be derived as follows, 

      

D
i

= 
0
E

i
+ P

i
= 

0
E

i
+ 

0
χ

ij
E

j
= 

0
δ

ij
+ χ

ij( )
κ

ij

  
E

j
 

The dielectric permittivity  κ  is also a second rank tensor.  The quantity in parentheses 
is sometimes referred to as the dielectric constant which is very close to 1 for gases, 
about 5 for glass, 80 for water, and can be in the thousands for perovskite (a type of 
crystal structure) ceramics. 

Example: Parallel plate capacitor 
Consider a parallel plate capacitor consisting of two materials bonded together and 
sandwiched between two electrodes.  The thickness and dielectric permittivity of 
material 1 are  hA

 and   κA
, and those of material 2 are  hB

 and   κB
.  We would like to 

determine the capacitance for this capacitor. 

First, the capacitance of a given capacitor is simply the total charge transferred between 
the capacitor electrodes divided by the electrical potential drop between the electrodes.  
Let’s say that the charge on the top electrode is given as Q, then by charge conservation 
(given that initially the capacitor has no net charge) the charge on the bottom electrode 
is –Q.  We can then take the bottom electrode to be grounded and the top electrode has 
a potential of  Φ .  We need to determine the relationship between Q and  Φ .  For 
simplicity, we will assume that our parallel plate capacitor is infinitely extended in two 
directions such that we only need to deal with the fields in the direction perpendicular 
to the electrodes.  We will call this direction x, and any vector quantities listed will be 
assumed to have only x-components.  In such situations the governing equations are, 

   
E = −

dφ
dx

,    
  

dD
dx

= q ,       D = κ
A
E  in material 1, or    D = κ

B
E  in material 2 

Given that the free charge density    q = 0 , Gauss’ law implies that the electric 
displacement must be a constant in each material (we will discuss the interface shortly).  
Let’s call the electric displacement in each material  DA

 and  DB
.  Then, the material 

constitutive relationships imply that the electric field in each material must also be 
constants,     EA

= D
A

/κ
A
 and     EB

= D
B

/κ
B
.  Finally, the electric potential through the 

capacitor must be a continuous piecewise linear function with a possible discontinuity in 
the slope at the interface between the two materials,    φ = −E

A
x  for    0 ≤ x ≤ h

A
 and 

    φ = −E
A
h

A
−E

B
(x −h

A
)  for   hA

≤ x ≤ h
A

+ h
B
.  Note that the continuity of the electric 
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potential at   x = h
A
 has been enforced.  At a material interface we must consider the 

jump in the normal component of the electric displacement.  Specifically, the difference 
in the normal component of the electric displacement is precisely the free surface charge 
density on the interface.  For our case we would have, 

   
D

B
−D

A
= ω

f
.  Since we have 

not placed any free charge at the interface we have 
    
ω

f
= 0  and   DB

= D
A
.  We now 

need to relate this uniform electric displacement to the free charge on the capacitor 
plates.  Here we again use the fact that the normal component of electric displacement 
must be equal to the free surface charge density.  The free surface charge density on the 
top plate is 

    
ω

f
= Q / A  and that for the bottom plate is 

    
ω

f
= −Q / A .  Your intuition 

for determining how a free charge layer affects the sign of the normal component of 
electric displacement is that a positive charge layer forces the electric displacement (i.e. 
the positive end of the dipole) to point away from it and a negative charge layer pulls 
the normal component of electric displacement towards it.  Hence, at the top electrode, 
where we are assuming that the outward pointing normal is in the positive x-direction, 
we have    DB

= −Q / A , and on the bottom electrode    DA
= −Q / A .  Placing these results 

into our relationships for the electric fields, and then into the equation for the electric 
potential we obtain, 

    

φ =

Q
κ

A
A

x                         for 0 ≤ x ≤ h
A

Q
κ

A
A

h
A

+
Q
κ

B
A

(x −h
A
)  for h

A
≤ x ≤ h

A
+ h

B

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

 

Now we can determine the potential on the top electrode as,  

    
Φ = φ(x = h

A
+ h

B
) =

Qh
A

κ
A
A

+
Qh

B

κ
B
A

, 

and the capacitance is 
    
C = Q /Φ =

κ
B
κ

A
A

κ
B
h

A
+ κ

A
h

B

. 

For a capacitor with a homogeneous material we can check three cases,  

    κA
= κ

B
= κ→C = κA / H , where 

  H = h
A

+ h
B
 

    hA
= H , h

B
= 0, κ

A
= κ→C = κA / H  

    hB
= H , h

A
= 0, κ

B
= κ→C = κA / H  
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One of the important physical features of this problem is the need for the interface 
conditions.  In a more general three-dimensional problem the interface conditions on the 
electric field and electric displacement come from two considerations.  First, the 
continuity of the electric potential implies that the tangential components of the electric 
field must be continuous across any equi-potential interface, e.g. an electrode.  
Mathematically this can be stated as, 

   [E− n(E ⋅n)]+ = [E− n(E ⋅n)]−  

We then also need a normal condition at an interface, and this condition comes from 
Guass’ law and choosing a small pillbox for a surface enclosing a small element of the 
interface, 

     
D ⋅n dS

S∫ = Q
f
enclosed → (D+ −D−) ⋅n = ω

f
 

Note that for this second equation the unit normal to the interface is taken to point 
from the “–” side to the “+” side. 
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Magnetostatics 

The second non-mechanical set of fields that we will study deal with magnetism.  
Specifically, we will only be concerned with magnetic fields associated with steady 
currents, such that the magnetic fields do not change in time, or at least change slowly 
such that we can use a quasi-static approximation.  This is the study of magnetostatics.  
As you probably know, electricity and magnetism are intimately related and the full set 
of Maxwell’s equations couple electrical and magnetic fields through their rates of 
change.   

     
∇ ⋅E =

q

0

       
   
∇×E = −

∂B
∂t

 

   ∇ ⋅B = 0         
      
∇×B = µ

0
J + µ

0

0

∂E
∂t

 

Only when the rates of change vanish, do these equations decouple.  Note that the 
vector J is the current density and B is what we will call the magnetic induction. (The 
history of this name is unfortunate as this and another quantity H are sometimes both 
called the magnetic field.  For lack of an alternative and to differentiate between these 
fields we will stick to calling B the magnetic induction).  The constant   µ0

 is the 

magnetic permeability of free space, and is equal to    4π×10−7  N/A2 . 

One approach to developing the equations of magnetostatics would be to introduce a 
magnetic version of Coulomb’s law and proceed from there.  In attempting to do so one 
would find a few differences.  First, it is impossible to find the magnetic equivalent of a 
charge (at least to date no repeatable confirmation that a magnetic monopole exists has 
been made).  So instead of charges/monopoles we would have to determine the 
interactions between magnetic dipoles.  If we were careful, we would find that the force 
between two magnetic dipoles is identical to the forces between two electrical dipoles.  
The magnitude of the force between two dipoles is inversely proportional to the distance 
between them raised to the fourth power, and it also depends in a rather complicated 
way on the relative orientations of the dipoles.  Instead of taking this approach, let’s 
start from another result, the Lorentz force law for a point charge. 

   
F = Q E + v×B( )⎡

⎣⎢
⎤
⎦⎥  

The first part of this equation is our electrostatic result, though we arrived at the 
electric field E as a definition through the work done on two charges.  The second part 
of this equation introduces the magnetic induction B, and claims that the force on the 
charge is proportional to the cross product of its velocity v and the magnetic induction.  
But what is B and where does it come from?  The answer is that B is itself generated by 
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moving charges.  For an account of the experiments performed by André-Marie Ampère 
in 1820, go to  

http://farside.ph.utexas.edu/teaching/em/lectures/node32.html 

For the sake of simplicity we will start from Maxwell’s laws.  First, note that since we 
now have a moving charge we no longer have a “static” situation.  However, we can 
have situations were large numbers of charge carriers are moving through a material 
such that while the charges themselves are not stationary, the average number of 
charges moving through a given surface per unit of time remains constant.  If we 
consider the charge accumulation in a given volume of material we have, 

   
J ⋅n dS

S∫ = −
d
dt

q dV
V∫  

where J is the current density and the left-hand side of this equation gives the flux of 
charge per unit of time flowing out of the surface S and the right-hand side is the 
amount of charge accumulated (de-accumulated?) in the volume.  Applying the 
divergence theorem and recognizing that the equation holds for any arbitrary volume 
yields, 

   
∇ ⋅ J = −

dq
dt

  

(On an interface with surface currents we would have 
    
J+ − J−( ) ⋅n +∇ ⋅K = −

dω
dt

.) 

This result can also be obtained from Maxwell’s equations, 

      

∇×B = µ
0
J + µ

0

0

∂E
∂t

∇ ⋅(∇×B) = µ
0
∇ ⋅ J + µ

0

0

∂
∂t
∇ ⋅E

0 = µ
0
∇ ⋅ J + µ

0

∂q
∂t

∇ ⋅ J = −
∂q
∂t

 

In magnetostatic situations the rate of change of the charge densities must be zero.  
Furthermore, Maxwell’s equations reduce to, 

   ∇ ⋅B = 0  

    ∇×B = µ
0
J  
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The first of these equations allows us to rewrite the magnetic induction as the curl of a 
vector potential field. 

  B = ∇×A  

Note that any two vector potentials, say   AA
 and   AB

, can be used to represent the same 

magnetic induction field so long as they only differ by the gradient of a scalar field.  In 
other words, 

    AA
= A

B
+∇ψ , then 

      
B = ∇×A

A
= ∇× A

B
+∇ψ( ) = ∇×A

B
+∇×∇ψ

0
   = ∇×A

B
 

Applying the vector potential within the latter of Maxwell’s equations listed above 
gives, 

    

∇×B = ∇× ∇×A( )
= ∇ ∇ ⋅A( )−∇2A

= −∇2A if we take ∇ ⋅A = 0

⇒∇2A = −µ
0
J

 

Aside: Proof of second line using index notation 

       

∇× ∇×A( )⎡
⎣⎢

⎤
⎦⎥i

= 
ijk

klm

A
m,lj

= δ
il
δ

jm
− δ

im
δ

jl( )
−δ  identity

  
A

m,lj

= A
j ,ij
−A

i, jj

=
∂
∂x

i

A
j , j( )−∇2A

i

=
∂
∂x

i

∇ ⋅A( )−∇2A
i

 

Note that taking    ∇ ⋅A = 0  is “legal” since we can always choose the scalar field  ψ  such 

that      ∇ ⋅∇ψ = −∇ ⋅A
B
⇒∇⋅A

A
= 0 .  So, given any B we will choose to represent it 

with the specific A that has    ∇ ⋅A = 0 .  Now, each component of our vector potential is 
governed by a partial differential equation that is directly analogous to its electrical 
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counterpart 
     
∇2φ = −

q

0

.  For a given charge distribution we showed that the scalar 

potential could be written as 

      

φ(x) =
1

4π
0

q( ′x )

x− ′xV∫ d ′V +
1

4π
0

ω( ′x )

x− ′xS∫ d ′S  

Then, by analogy the vector potential can be written as, 

     

A(x) =
µ

0

4π
J( ′x )

x− ′xV∫ d ′V +
µ

0

4π
K( ′x )

x− ′xS∫ d ′S  

Here, K is the surface current density.  We note that the divergence of A will only be 
zero if    ∇ ⋅ J = 0  in the volume and    J ⋅n−∇ ⋅K = 0  on the surface, but these must be 
the case for magnetostatics.  The magnetic induction can then be written as, 

     

B(x) = ∇
x
×A =

µ
0

4π
∇

x
×

J( ′x )

x− ′xV∫ d ′V +
µ

0

4π
∇

x
×

K( ′x )

x− ′xS∫ d ′S

=
µ

0

4π
J( ′x )×(x− ′x )

x− ′x
3V∫ d ′V +

µ
0

4π
K( ′x )×(x− ′x )

x− ′x
3S∫ d ′S

 

This equation is the Biot-Savart law for B in terms of the current densities. 

We now approach the concept of work done by a magnetic field.  Here we encounter a 
subtlety, which is the source of a great deal of confusion, because from the Lorentz force 
law it can be readily shown that the magnetic induction does no work on a charge. 

    

dW = F ⋅dx
= Q(v×B) ⋅ vdt
= 0  because v×B is perpendicular to v

 

OK, but this does not change the fact that it does take energy to magnetize an object, 
and if that process is reversible then it is possible to get that energy back.  Let’s see if 
we can understand this by looking at the forces on a magnetic dipole.  We are 
investigating dipoles because they are the simplest magnetostatic element and all 
current distributions can be built up from combinations of differential current loops 
(which are magnetic dipoles).  First, the vector potential for a current loop is, 

     
A =

µ
0

4π
m×x

r 3
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where m is the dipole for the loop carrying a current I with differential area   da  
(direction chosen using the right-hand rule with the current direction) given as 

   m = I da .  First, let’s consider this dipole in a uniform field.  The current I can be 
represented as a number N of charge carriers Q  passing through a point on the loop 
traveling with velocity    v = ve

t
 in the loop, where   et

 is the unit tangential direction in 

the loop such that     et
⋅da = 0 .  Then    I = NQv / L  where L is the arc length of the loop.  

The force on each one of the charge carriers is, 

   dF = Qve
t
×B  

The total force on all of the charge carriers in the loop is then, 

    
F =

NQv
L

e
t
dl

loop∫ ×B = I e
t
dl

loop∫ ×B  

If the loop is in fact closed, then the integral of the tangential unit vector around the 
loop will be zero.   

    
e

t
=

dx
dl

⇒
dx
dl

dl∫ = dx
xA

xB

∫ = x
B
− x

A
= 0 when x

B
= x

A
 

So, in a uniform field the force on a dipole is zero.  How about a non-uniform field?  To 
analyze non-uniform fields we will resort to a rectangular loop for the sake of simplicity.  
Take the opposite sides of the loop to be lengths a along the x-direction and b along the 
y-direction, and the current circling in the counterclockwise direction such that the 
dipole is given as    m = Iab e

z
.  The total force on the wire is the sum of the 

contributions from each charge carrier. 

    
F = I e

t
×B dl

loop∫  

Expanding the B-field into a Taylor series up through all first order terms yields, 
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F = I e
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Here we can interpret   −m ⋅B  as the potential energy of the dipole and of course the 
force on the dipole is just the negative gradient of the potential energy.  The increment 
of work done by this force to bring the dipole into place is just, 

    dW = F ⋅dx
L

= ∇(m ⋅B) ⋅dx
L
 

However, we must be careful because this is not the total energy of the dipole.  You see, 
during the process of moving the dipole through the B field we have to impart a velocity 
on the loop, which in turn gives rise to forces on the charges, which if left unchecked 
will change the current in the loop.  But our analysis considered only steady currents in 
the loop, so we must also determine the energy required to maintain the steady 
currents.  We have already calculated the contribution to the force due to the current 
velocity.  This is exactly what the result above is.  Now we need to calculate the work 
due to the loop placement velocity.  To do this we need to compute, 

    
F =

NQ
L

v
L
× B dl

loop∫  

When we dot this with   vL
dt  we of course get zero.  However, we also have to dot this 

with   vet
dt .  Note that in the work computed previously it looks like we only dotted our 

force result with   vL
dt , which perhaps is true, but when we also include the   vet

dt  this 

second contribution will be zero.  Maybe you have already recognized that if we carry 
out this second dot product we will obtain   m ⋅B  for the work done.  Let’s do it anyway. 
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This is exactly the opposite of the previous work term that we calculated.  The previous 
work that we computed is the work done by the external force required to move the 
loop into place while the currents in the loop and in the source of B are maintained.  
This is usually called the mechanical work.  This second work contribution is the work 
required to maintain the current in the loop at its steady value while the loop is being 
moved into place.  This work can be thought of as being done by a battery and is 
usually called the electrical work.  So overall we are back to the situation where no net 
work has been done.  However, we are not quite done accounting for all of the work that 
has been done.  You see, we not only have to maintain the currents in the loop, but we 
also have to maintain the currents at the source.  A quick way to determine what is 
going on at the source comes from Feynman’s Lecture Notes.  Instead of moving the 
test loop into place, change the frame of reference so that it appears that we are moving 
the source into place.  For quasi-static situations there are equal but opposite reactions 
between the source and the test loop, so the source requires the same work contributions 
as we calculated for the test loop.  Finally, to determine the total work done in either of 
these processes we must recognize that the electrical work at both the source and the 
test loop must be supplied in order to maintain the currents, but the mechanical work is 
done on only the test loop or the source depending on your frame of reference.  Hence, 
the total work required to bring a test dipole into a B field is, 

   W = m ⋅B  
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The derivation of this result sheds some light on the subtleties associated with 
determining the “magnetic work” done on a system.  When we look at the work done to 
magnetize an object we will use Maxwell’s laws directly to calculate the magnetic work 
through the electric field. 

 


