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A Phenomenological Constitutive Theory for Ferroelasticity 

Next we move away from linear response.  We have spent several qualitative lectures on 
the behaviors of various “smart” materials in an effort to link the microstructural 
evolution mechanisms to the macroscopically observed behaviors.  In the following we 
will attempt to develop a mathematical structure that can be applied, usually within 
the finite element method, to solve boundary value problems.  For the sake of simplicity 
we will stick to the purely mechanical case of a ferroelastic description of twinning and 
detwinning.  It is useful to define the type of problem we are interested in investigating.  
Let’s say we have some structure with a characteristic dimension of centimeters or 
more, like a compact tension specimen.  Grain sizes are in the micron to tens of microns 
regime, and domain structures are of that scale or smaller.  The point of this discussion 
is that if we want to do a finite element calculation is a reasonable amount of time on a 
compact tension specimen then we are not going to be able to track every domain wall 
or twin boundary, and we are not even going to be able to track what is going on from 
grain to grain.  So our constitutive law is going to have to attempt to describe what is 
going on in a collection of grains.  Our “material point” is actually some representative 
volume of the material.  This should not cause you too much consternation, as this is 
exactly what is done for polycrystalline metal plasticity, and we will use the same 
mathematical structure. 

We are trying to model an irreversible process, so we will need to introduce a set of 
internal variables that will enable us to determine the state of the material.  Strictly 
speaking, the full set of internal variables would be the locations of all of the domain 
walls or twin boundaries in the material.  As we alluded to previously such a task would 
be for all intents and purposes impossible.  It can be argues that the smallest set of 
internal variables needed to describe a ferroelastic material is the remanent (plastic) 
strain.  Formally we will write our free energy as, 
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An analysis of the second law yields, 
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Note that the original free energy functional was constructed with the desired form for 
the elastic stress-strain behavior in mind.  Also note that we have assumed that the 
elastic properties 

 
c

ijkl
 are not dependent on our internal variables 

  
ε

ij
r .  This assumption 

is a simplification for ferroelastic twinning and detwinning because in general the elastic 
properties at the lattice level are anisotropic and any texture that is induced by 
remanent straining will lead to elastic properties that are dependent on the orientation 
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of that texture and the magnitude of the remanent strain.  Note that an initially 
isotropic texture (i.e. distribution of variant orientations) will have isotropic elastic 
properties.  Again, we will neglect this feature of the problem for now as it is less 
important for ferroelastic materials than it is for ferroelectric materials.   

The second law now identifies a driving force that is work/dissipation conjugate to the 
rate of change (or increment in the rate independent case) of the internal variables.  
Following the terminology of kinematic hardening plasticity, the term 

    
∂ψ / ∂ε

ij
r ≡ σ

ij
B  is 

called the back stress.  Note that the inclusion of 
   
ψr(ε

ij
r )  in the Helmholtz free energy 

indicates a non-standard contribution to the stored energy in the material.  Recall that 
we have simplified our description of the internal state of the material considerably and 
have “swept the specifics of the domain microstructure under the rug”.  Well, that 
bump under the rug is essentially the energy due to residual stress associated with the 
incompatibilities that arise during remanent straining.  The specifics of these internal 
stresses depend on the geometric structure of the domains, which we have decided to 
ignore, so at best we can only account for this energy contribution in a 
phenomenological way.  But that is the physical motivation for this term.   

Next, we will assume that there is some region within the driving force space, which we 
will call 

    
σ̂

ij
≡ σ

ij
−σ

ij
B , where the material responds in a linear elastic manner and the 

increments of remanent strain are zero.  In plasticity the boundary of this surface is 
called the yield surface, and for ferroelasticity this is sometimes referred to as the 
switching surface.  So, for states of the driving force that are within the surface we have 

     
ε
ij
r = 0 , and then switching is possible for states of the driving force on the surface given 

by the equation, 
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Note that we have explicitly listed the potential dependence on the internal variable.  
For a specific material description this dependence may or may not exist.  Before we 
discuss a specific form for the switching surface let’s first discuss the implications of 
another widely used postulate.  Specifically we will assume that the material abides by 
the postulate of maximum dissipation.  Before stating this postulate I will note that this 
is not a requirement of the laws of thermodynamics, but rather is something extra.  I 
will not get into the details, but there are some very nice fundamental arguments 
showing that many mechanisms of quasi-static deformation lead to this postulate.  For 
our purposes we will take it as an assumption.  So let’s state the postulate. 
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Postulate of Maximum Dissipation – For a given remanent increment, 
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Let’s now consider the implications of this postulate.  To do this we need to maximize 
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by introducing the Lagrange multiplier  λ  and solving, 
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This equation is the flow rule for the remanent strain increment.  What this equation 
states is that the increment of remanent strain is normal to the point on the switching 
surface at 

    
Φ(σ̂

ij
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r ) = 0 .  In general, the flow rule is introduced through a plastic 

potential that is not necessarily equivalent to  Φ .  However, the postulate of maximum 
dissipation implies that the plastic potential is  Φ , and the flow rule is called an 
associated flow rule (i.e. the flow rule is “associated” with the switching surface).  Next, 
we also need to consider the conditions for this increment to be a maximum, and not a 
minimum or a saddle point.  This will be a maximum if the Hessian 
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to only be a positive multiplier then 
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 must be positive definite.  Let’s consider 

the geometrical implications of this condition.  First, take a driving force 
   
σ̂

ij
 that 

satisfies   Φ = 0  and consider other nearby driving forces that lie on the tangent plane to 
 Φ  at that point.  Note that in order to satisfy the second law, and assuming that  λ  is a 
positive multiplier, the switching surface must enclose the origin in driving force space, 
so without loss of generality we can always assume that   Φ < 0  inside the switching 
surface and   Φ > 0  outside the switching surface.  For our nearby driving force state on 
the tangent plane we have, 
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Now, since our original state 
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 is on the switching surface, we have 
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r ) = 0 .  

Also, since the driving force increment 
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 is in the tangent plane and 
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to the tangent plane, the second term in the series is also zero.  Finally, since the 
postulate of maximum dissipation implies that the Hessian is positive definite and 
neglecting the higher order terms we have, 
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What this tells us is that for nearby driving force states on the tangent plane to 

    
Φ(σ̂

ij
,ε

ij
r ) = 0 ,   Φ > 0 .  So this means that the points on the tangent plane are outside of 

the switching surface.  Since this argument applies to all of the points on the switching 
surface, it implies that the switching surface must be convex, i.e. all tangent planes lie 
to the outside of the surface. 

So to recap, the postulate of maximum dissipation implies that there is an associated 
flow rule such that the increments of the internal variables are normal to the switching 
surface in driving force space, and that the switching surface is convex in driving force 
space.  There is another way to mathematically state the requirements of the maximum 
dissipation postulate that is useful for bounding proofs in plasticity.  Let’s go through 
the proof.  
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To demonstrate our assertion we first define the driving force increment 
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Using 
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So 
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r ≥ 0  is simply another way to mathematically state the consequences of 

the maximum dissipation postulate. 

These are a few nice general principals that help us to constrain our constitutive theory 
in a more restrictive manner than the second law does.  However, we still need more 
specifics in order to model a particular material.  Note that when dealing with 
transformations from one martensite variant to another martensite variant there can be 
no remanent volume change because the size and shapes of the variants are identical but 
their orientation differs.  So if there is no volumetric remanent strain increment then, 
assuming and associated flow rule, the hydrostatic part of the driving force cannot 
contribute to the switching surface.  This is in direct accord with the assumptions of 
metal plasticity.  This implies that the switching surface must be in terms of the 
deviator of the driving force, 
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Then, if the material is initially isotropic, in this case we are referring to plastic 
isotropy, then the switching surface can only depend on the invariants of 
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ŝ

ij
ŝ
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.  In general the size and shape of the switching surface would 

have to be measured experimentally.  For illustrative purposes we will make the simple 
assumption consistent with J2-flow theory in plasticity that the switching functional can 
be written as, 
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where   σ0
 is the uniaxial switching strength, which is the stress in uniaxial tension or 

compression where switching commences.  Then the flow rule is written as, 
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The one last piece of the framework that is required is the specification of the remanent 
potential 

   
ψr(ε

ij
r ) .  Again, if the material is initially isotropic with regard to its texture, 

then the remanent potential can only depend on the invariants of the remanent strain.  
Even though the remanent strain has no volumetric part it is still useful to formally 
define and use the remanent strain deviator 
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potential can be written in terms of the following two invariants, 
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With these invariants   J2
e  can be regarded as the “magnitude” of the strain, and the 

ratio   J3
e /J

2
e  can be thought of as the “direction” or “type” of strain, with    J3

e /J
2
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being a uniaxial volume conserving extension,    J3
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2
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conserving contraction, and    J3
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2
e = 0  being a pure shear remanent strain.  All other 

strain “types” lie in the region    −1≤ J
3
e /J

2
e ≤ 1 .  With ferroelastic materials one of the 

required features of the remanent potential is that is must enforce the remanent strain 
saturation conditions.  This implies that when the remanent strain state gets close to a 
saturated state the remanent potential must increase rapidly.  Furthermore, the 
saturation state most like depends on the remanent strain “type” such that this state is 
dependent on the ratio   J3

e /J
2
e .  Specifically, in tetragonal materials where the c-axis of 

the unit cell is longer than the a-axes, the saturated remanent strain in tension is 
greater than the saturated remanent strain in compression.  So in general, for an 
isotropic material, we would have     ψ
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For a material that is elastically and initially remanently isotropic the four components 
of our constitutive law are, 

Elasticity:  
    
σ

ij
= (2

3
µ +λ

e
)δ

ij
ε

kk
+ 2µ(e

ij
− ε

ij
r )   where   

    
e

ij
= ε

ij
− 1

3
ε

kk
δ

ij
 

Switching surface: 
    
Φ = 3

2
ŝ
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Flow rule: 
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  with    λ ≥ 0  if    Φ = 0   and     λ = 0  if    Φ < 0  

Hardening law: 
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From these considerations we can construct the forward tangent moduli for a material 
undergoing remanent straining.  First consider the consistency condition, 
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Elasticity then implies that 
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Solving for  λ  gives, 
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Then, going back to the incremental elasticity relationships, we have, 
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This is simply the incremental stress-strain behavior for a material point that is in the 
process of switching.  Note that this is called the forward tangent description and is not 
the best approach to use for numerical methods.  Let’s take a closer look at how such 
constitutive laws would be implemented in the finite element method. 

First let’s start with the principle of virtual work. 
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In general we will be solving a non-linear irreversible problem so we will have to solve 
this problem both incrementally (due to the irreversibility) and iteratively (due to the 
non-linearity) in time.  Imagine that we have some load history given to use and that at 
some point in time we know the solution that satisfies the weak form of equilibrium 
given by the principle of virtual work.  In other words, we know 
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t ,  ui

t , and 
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r ,t  for the 

load history that is currently at  bi
t  and  Ti

t .  Our goal is to determine 
   
σ

ij
t+Δt ,   ui

t+Δt , and 
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r ,t+Δt  for the new state of loading   bi
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t+Δt  given what we already know at time 

 t .  Since our constitutive law is nonlinear we will have to do this using an iterative 
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scheme, and the Newton-Raphson method is usually the best procedure for this task.  
Let’s define 
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I  as the Ith estimate of 
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t+Δt .  Then once we have found a converged 

solution we will set 
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To first order, the stress change 
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constitutive integration routine that will be used to solve the constitutive model.  This 
then leads to the following form of the PVW, 
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Which ultimately leads to the finite element equations, 
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will be using a backward Euler integration routine.  This integration method satisfies 
our constitutive equations at the end of the step.  This means that the elasticity 
relations and the switching conditions will be met exactly, but the flow rule will only be 
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To solve these equations first dot the flow rule equation with itself, 
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Now, use the switching criterion and solve for the multiplier  λ . 
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Placing this result and the elasticity equations into the flow rule gives us the nonlinear 
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This set of nonlinear equations is then solved using the Newton-Raphson method as 
follows. 
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Here the superscript i represents the quantity at the ith iteration.  The update to 
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r .  Therefore, 
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When these equations are solved we will have 
   
f
ij
i = 0 , 

    
Δε

ij
r ,i → Δε

ij
r , and then 

    
s

ij
I +1 = 2µ(e

ij
I +1 − ε
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r ,t −Δε
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r ) .  So we have accomplished one of our tasks for the finite 

element method, the determination of 
    
σ

ij
I +1 .  Note that the hydrostatic part of the stress 

is simply,     σkk
I +1 = (3λ

e
+ 2µ)ε

kk
I +1 .  Next we must also determine the tangent moduli for 

the finite element scheme.  To do this, we need to find how the solutions to our 
constitutive equations vary if we vary the strain.  Taking these variations at the end of 
our converged Newton-Raphson iterations for the constitutive solution yields, 
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This can be simplified by noting that for the converged solution we have 

    
Δε

ij
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B) .  Then, 
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So, 
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ij
r = 6µλA
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and  
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ijkl
)de

kl
 

This, finally, gives the tangent moduli for the finite element method.  Note that this 
entire derivation has assumed that the material point is in the process of changing its 
remanent strain.  So, prior to going through all of this work at a given integration point 
you first assume that 

    
Δε

ij
r = 0 , compute the new stress state based on this assumption 

and the new strain state, and then check to see if this stress state violates the switching 
criterion.  If the switching criterion is satisfied then the point has simply deformed 
elastically and this solution is accepted and the tangent moduli are just the linear elastic 
moduli, but if the criterion is violated then the point is changing its remanent strain 
and we proceed through this constitutive integration step. 
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Application of this Theoretical Structure to Ferroelectricity 

In and of itself, ferroelasticity is not a particularly “smart” behavior.  However, we have 
gone through this exercise because you are all most familiar with mechanical fields and 
so the terms are easier for you to understand.  But if you are able to understand all of 
this then the application to ferroelectric behavior is not really all that much more 
complicated.  Let’s return to the second law to take a look at what we have to do for 
ferroelectricity. 

     
σ

ij
ε
ij

+ E
i
D
i
− ψ ≥ 0  

In other words the dissipation rate must be non-negative.  Now let’s assume a free 
energy of the form, 

    
ψ = ψ(ε

ij
,D

i
,ε

ij
r ,P

ij
r )  

So we have our standard strain and electric displacement configurational variables, and 
additionally the remanent strain and remanent polarization as internal variables.  Then 
the dissipation inequality becomes, 
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By standard arguments we will take 
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 and 
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of the free energy functional.  We will assume, 
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This yields the linear piezoelectric relationships for the stress and electric field as, 
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With this form of the free energy the second law inequality now becomes, 
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This equation identifies the driving forces, which are “dissipation conjugate” to the 
internal variables.  Unfortunately there is a mixture of stresses, strains, electric fields, 
and electric displacements in these driving forces.  We would prefer to have these 
driving forces simply in terms of the stresses and electric fields.  One approach for doing 
this would be to invert the linear piezoelectricity relationships and solve for 

    
(ε

ij
− ε

ij
r ) 

and    (Di
−P

i
r )  in terms of 

  
σ

ij
 and  Ei

, but there is another method.  Consider the stored 

part of the Helmholtz free energy and a Legendre transformation to obtain the stored 
part of the Gibbs free energy. 
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The Legnedre transformation gives us 
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These sets of equations imply that, 
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These new definitions of stress-like and electric field-like variables allow for a compact 
form of the dissipation inequality as, 
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Where the back stress and back electric field are 
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.  Finally, if 

we assume that the postulate of maximum dissipation holds then we will have a convex 
switching surface in driving force space, 
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and an associated flow rule for the remanent increments, 
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Macro Single Crystal Constitutive Laws 

Our previous descriptions of material behavior were based on a “material point” that 
consisted of several grains.  If we go down in scale, or if we consider very large single 
crystals (with lengths in the centimeter range), then we might consider or “material 
point” to be within a given crystal but comprised of several domains.  In such a case we 
need to decide on what to use as internal variables.  Again, a fully detailed continuum 
description would require us to know the locations of each of the domain walls.  We will 
get to a theoretical framework that does study these materials at this level, but here we 
want something a bit more macroscopic.  One natural set of internal variables to 
describe our many-domain material point includes the volume concentrations of each 
domain variant.  In this case, our Helmholtz free energy looks like, 

    
ψ = ψ(ε

ij
,D

i
,cI ) , 

where the  c
I  are the volume concentrations of each of the domain variants.  For a 

tetragonal material there will be 6 variants and so I will range from 1 to 6.  Let’s take a 
look at how this fits into the second law. 

     
σ

ij
ε
ij

+ E
i
D
i
− ψ ≥ 0  

     
σ

ji
ε
ij

+ E
i
D
i
−
∂ψ
∂ε

ij

ε
ij
−
∂ψ
∂D

i

D
i
−

∂ψ
∂cI
cI

I
∑ ≥ 0  

Again, there are several different arguments used for the analysis of this inequality, for 
our purposes we will take the easy way out and simply claim that this inequality is 
satisfied if, 
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Next, let’s determine how we will be describing the reversible behavior of the material.  
In other words, for a fixed set of  c

I  how does the material respond?  We will assume 
standard linear piezoelectric response about a fixed remanent state.  Before we do this, 
it will eventually become useful to look at the Gibbs free energy instead of the 
Helmholtz free energy.  The Gibbs free energy is defined through the Legendre 
transformation, 

   
g = ψ−σ

ij
ε

ij
−E

i
D

i
.  This transformation allows us to see that the 

Gibbs free energy is a functional of the stress, electric field, and variant concentrations, 

    
g = g(σ

ij
,E

i
,cI ) .  In terms of the Gibbs free energy, the second law and the constitutive 

relations look like, 
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We now return to our description of the linear response about a fixed remanent state.  
The strain and electric displacement are assumed to have the form, 
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These equations suggest the following form for the Gibbs free energy. 
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Note that the “remanent” part of the Gibbs free energy will be equal to the “remanent” 
part of the Helmholtz free energy.  The next question that we need to address is, how 
do the quantities 
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r  each depend on the  c
I ?  In order to answer 

this question in a rigorous way, we would need to know the actual configuration of the 
domains and the domain walls.  Since we have resigned ourselves to not do this, we will 
have to resort to some approximation.  The simplest approximation to use is to assume 
that the stress and electric field states in the “material point” are homogeneous.  This 
assumption satisfies mechanical equilibrium and the continuity requirements on the 
electric field, but in general it will violate kinematic compatibility and Gauss’ law across 
domain walls.  Other assumptions or more rigorous analyses can be performed assuming 
specific domain structures, but for our purposes we will use the uniform stress and 
electric field assumption.  Under this assumption each of the 
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Each of the quantities with a superscript I represents the constant value of the property 
within a mono-domain of that variant type.  For a tetragonal crystal, if we know the 
properties of one mono-domain type, then the properties of each of the other variants 
are simply 90° or 180° tensor rotations of the originals. 

Now, with these relationships we can write our Gibbs free energy in terms of only the 
stress, electric field, and variant concentrations.  Prior to attempting to analyze the 
dissipation inequality associated with the second law, it is useful to attempt to 
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incorporate the mechanisms for domain switching into the model.  To do this we 
recognize that switching occurs by transforming one variant type into another.  If we 
account for forward and backward transformations separately, then there will be 

   I(I −1) different transformation types possible.  We will say that each one of these 
transformations occurs along a specific “transformation system”, and we will label these 
transformation systems as      α = 1…I(I −1) .  Assuming that a given transformation 

system is active, then we will call the rate of transformation along that system    
f α .  In 

order to relate these transformation rates to the rates of change of the variant 
concentrations we need to introduce the connectivity matrix   A

Iα  such that, 

    
cI = AIα

α
∑ f α  

where 

    

AIα =
1  if system α feeds into variant I
−1  if system α depletes variant I

0  if system α does not affect variant I

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

 

Now we can look at the dissipation inequality. 
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This equation has helped us to define the driving forces   G
α  that are work/dissipation 

conjugate to the transformation rates.  We can now specifically analyze each of the   G
α  

as, 
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where the    Δpropertyα  is the value of the property for the variant that system  α  
transforms to, minus the value of the property for the variant that system  α  transforms 
from. 

In class we discussed what these driving forces looked like for both the 90° and 180° 
transformation types.  I will not go through those descriptions again here.  In order to 
complete the constitutive description we still need some kinetic law relating the 
transformation rates.  First, we can note that since we are already accounting for 
forward and reverse transformations separately we can, and in fact should, constrain 

     
f α ≥ 0 .  The dissipation inequality then implies that a given transformation system can 

only be active if     G
α ≥ 0 .  From here there are two commonly used forms for a kinetic 

law, a simple power law, 
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or an “overstress” power law, 
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The overstress power law gives a distinct rate-independent linear piezoelectric response.  
Note that we did not discuss the remanent part of the potential in great detail.  Again, 
this term will be responsible for kinematic hardening within the model, and it is 
intended to, in some qualitative way, account for the residual stresses and electric fields 
that we have “swept under the rug” by assuming uniform stresses and electric fields 
within our material point. 
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A Model for Domain Structure Evolution 

In our previous macroscopic models we described our “material point” as a collection of 
grains, or a collection of domains, always keeping in the back of our minds that in order 
to truly compute all of the fields we are interested in we need to know the locations of 
every domain wall.  One reason why we devised the prior models is because tracking the 
positions of every domain wall in a volume of significant size can quickly become an 
intractable problem.  But let’s say that we are now interested in interactions and 
domain structure evolution at a much smaller scale.  Let’s devise a continuum theory to 
model such situations. 

In our prior theories we always resorted to a linear piezoelectric response about some 
remanent state of the material.  If we are interested in describing the structure of the 
domain walls themselves then our theory must allow for significant departures from the 
states that can be described using linear piezoelectricity.  Specifically, we need a 
description of the free energy that includes the energy minima associated with the 
different variant types, along with the energy barriers separating these minima.  For 
ferroelectric materials and “internal variable” or “order parameter” that can be used to 
describe this “energy landscape” is the polarization vector.  For a tetragonal material at 
least part of the free energy can be represented as, 

     

ψ = …+
a

1

2
(P

x
2 + P

y
2 + P

z
2)+

a
2

4
(P

x
4 + P

y
4 + P

z
4)+

a
3

2
(P

x
2P

y
2 + P

x
2P

z
2 + P

y
2P

z
2)+…

−
b

1

2
(ε

xx
P

x
2 + ε

yy
P

y
2 + ε

zz
P

z
2)−

b
2

2
[ε

xx
(P

y
2 + P

z
2)+ ε

yy
(P

x
2 + P

z
2)+ ε

zz
(P

y
2 + P

x
2)]

−b
3
[(ε

xy
+ ε

yx
)P

x
P

y
+ (ε

xz
+ ε

zx
)P

x
P

z
+ (ε

yz
+ ε

zy
)P

z
P

y
]+…

+
c

1

2
(ε

xx
2 + ε

yy
2 + ε

zz
2 )+c

2
(ε

xx
ε

yy
+ ε

zz
ε

yy
+ ε

xx
ε

zz
)+

c
3

2
(ε

xy
2 + ε

yx
2 + ε

xz
2 + ε

zx
2 + ε

yz
2 + ε

zy
2 )+…

+
1

2κ
0

(D
i
−P

i
)(D

i
−P

i
)

 

The  …  are meant to represent terms that we have not included yet, or terms that can 
be included to yield a more refined description of the energy landscape.  Briefly, the first 
line can be used to represent the distinct energy minima associated with the different 
polarization variants.  The second and third lines include “electrostriction-like” terms in 
that they couple the strain and the “square” of the polarization.  Note, however, that if 
these terms are linearized about one of the energy minima, then they account for linear 
piezoelectricity.  The fourth line includes elastic terms that, as shown, can only describe 
cubic elastic properties, so additional terms are needed to obtain tetragonal properties.  
Finally, the last line will ultimately yield the relationship between the electric field, 
electric displacement, and material polarization,     Di

= κ
0
E

i
+ P

i
. 
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Within this theory we will still be solving the standard small deformation equations for 
mechanics and electrostatics.  Let’s list these equations here. 

     
σ

ji, j
+b

i
= ρ u

i
 in V,  

   
σ

ji
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ij
 in V,  
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ji
n

j
= t

i
 on S 
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ij
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2
(u

i, j
+ u

j ,i
)  
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i,i
= q  in V,    Di

n
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i
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    Di
= κ

0
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i
+ P

i
 

Now, if we attempt to solve these equations with the non-convex free energy given 
above (assuming constitutive relationships can be derived in a consistent manner), then 
what results are states of the material “near” the minimum separated by zero-thickness, 
zero-energy boundaries.  These are the domain walls, and across such a wall the 
gradients of the polarization will be singular.  In order to give the domain walls 
thickness, and more importantly energy, we can penalize such sharp gradients of 
polarization by including a term in the free energy of the form, 
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In general we will simplify this considerably, using    a0
= a

0
 and     

a
0

= â
0

= 0 .  With this 

term in the free energy, singular polarization gradients imply an infinite energy density.  
To reduce the “exchange” energy of the system the transition between polarization 
states will “smooth out” at the expense of additional strain and electrical energy within 
the wall. 

We have not yet addressed the fact that we have added an independent variable in the 
free energy, but we have not included a work conjugate force that is able to drive 
changes in this variable.  To address this, we introduce a micro-force tensor 

  
ξ

ji
 such 

that   gi
P
i
 represents a power density expended across surfaces by neighboring 

configurations, an internal micro-force vector   πi
 such that    πi

P
i
 is the power density 

expended by the material internally, e.g. in the ordering of atoms within unit cells of the 
lattice (this force will account for dissipation in the material), and an external micro-
force vector   γi

 such that    γi
P
i
 is a power density expended on the material by external 

sources.  Then, the integral balance of this set of configurational forces leads to the 
differential balance law 
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g

i
dS

S∫ + π
i
dV

V∫ + γ
i
dV

V∫ = 0 in  V 

We will assume that there is a micro-force balance at the surface of the form, 
   
g

i
= ξ

ji
n

j
, 

where the tensor 
  
ξ

ji
 is representative of the material reaction to the surface micro-

forces.  Then, the integral micro-force balance can be shown to reduce to the point-wise 
form, 

    
ξ

ji, j
+ π

i
+ γ

i
= 0  

Now that we have defined our micro-forces and how they do work, we can go on to 
analyze the second law. 
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As always, the left hand side represents the rate of stored plus kinetic energy in the 
material and the right hand side represents the power expended by external sources on 
the body.  Note that the internal force   πi

 does not contribute to this external power 

term.  We now analyze this equation using the divergence theorem where applicable and 
the balance laws to cancel terms to get for an arbitrary volume, 
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Note that we have assumed that the stress, electric field, micro-force tensor, and 
internal micro-force each are allowed to depend on 

    
ε
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 and P

i
.  The question 

can be raised as to why the free energy must be allowed to depend on   
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i
.  The answer 

being that since the internal micro-force   πi
 is allowed to depend on  

P
i
, then all of the 

thermodynamic forces must also potentially have such dependence.  This is the principle 
of equi-presence.  It will be shown that the second law inequality ultimately allows only 
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.  Following Coleman and Noll (1963), it is assumed that for a given 
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otherwise there will always be some value of   
P
i
 that can be selected to violate the 

inequality.  Next, the first second and fourth terms are linear in 
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ij
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i
, and P
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, and 

hence we must have, 
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Finally, after defining
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If we place the constitutive relationships back into our balance laws, we obtain the 
following governing equations for our independent variables. 
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We can also obtain the rate independent form of these equations using the minimization 
of the potential energy.  We define the potential energy as a functional of the 
displacement field, the charges, and the polarization field.  The strain field is then 
derived from the displacements from the linear kinematics equations, and the electric 
displacements are related to (but cannot be derived from) the charges through Gauss’ 
law.  The potential energy is written as, 
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Note that we have explicitly included the potential energy of the micro-forces here.  If it 
is argued that such forces do not exist, then these quantities can simply be set to zero.  
The minimization of the potential energy then proceeds as follows. 
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This equation must hold for arbitrary variation in the volume and on the surface, and 
this then implies that the following equations must hold, 
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Note that these equations are a result of the minimization of the potential energy and 
thus are equations that must hold in equilibrium.  In order to account for dissipation 
arguments can be made that the internal variables are allowed to evolve towards 
equilibrium.  We will not get into these arguments here, but we will note that the 
minimization of the potential energy approach yields the same generalized equilibrium 
equations as the balance law approach, but without the need to ever introduce the 
concepts of the material stress, electric field or material micro-forces. 

In any case, we now have the governing equations of our theory in hand, so let’s now 
investigate perhaps the most fundamental type of solution for this theory; the domain 
wall.  Let’s consider solutions for initially straight domain walls in the y-z plane moving 
at constant velocity v in the x-direction.  The polarization and any applied electric fields 
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will exist in the x-y plane, i.e.    Pz
= 0  and    Ez

= 0 , and generalized plane strain is 

assumed, i.e. 
    
ε

xz
= ε

yz
= 0  and   εzz  is uniform.  Transforming to a coordinate system 

that is moving along with the domain wall at constant velocity v, symmetry 
considerations dictate that the solutions for stresses, strains, electric fields, electric 
displacements, polarizations and micro-forces are functions of x only.  Given these 
constraints, let’s look at the conditions imposed by strain compatibility. 

    

∂ε
xx

∂y
=
∂2u
∂x∂y

= 0→ u = f
1
(x)+ g

1
(y)  

    

∂ε
yy

∂y
=
∂2v

∂y 2
= 0→ v = f

2
(x)y + g

2
(x)  

    

∂ε
xy

∂y
=

1
2
∂2v
∂x∂y

+
∂2u

∂y 2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

= 0→ ′f
2
(x)+ ′′g

1
(y) = 0

→− ′′g
1
(y) = ′f

2
(x) = c

0

→ g
1
(y) = − 1

2
c

0
y 2 +c

1
y +c

2

f
2
(x) = c

0
x +c

3

 

So, let’s see what all of this implies for the strains. 
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This says that   εxx  is still and arbitrary function of x. 
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This says that 
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rotation, 
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If we also claim that the rotation must also only be a function of x, then the coefficient 

   c0
= 0 .  This condition implies that we are not bending the specimen such that the 

domain wall becomes curved.  Finally, the 
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yy
 component of the strain is, 
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Again, imposing the no wall bending constraint, this equation simplifies to the claim 
that the 

  
ε

yy
 component of the strain is constant.  In this case we will rewrite this 

condition as, 

    
ε

yy
= ε

yy
0  

Next, let’s look at the electrostatic equations.  With no free charge q, Maxwell’s laws 
governing the quasi-static electric displacement and the electric field distributions imply 
that, 
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The parameters 
   
ε

yy
0 ,   Dx

0  and 
  
E

y
0  are the constant axial strain, electric displacement and 

electric field in the associated directions.  

Next, let’s look at the mechanical momentum balances.  With the fact that     εxx = ε
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(x)  

and hence 
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= 0 , the momentum balances imply, 
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0  and 
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0  are constants.  Finally, the micro-force balances from Equations 

(2.16) become 
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The solutions to these equations are subject to the boundary conditions 
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−∞( ) = 0 .  Along with these boundary conditions the 

governing equations can be solved for the electromechanical structure of a planar 
domain wall moving at constant velocity.  Prior to trying to solve these equations for a 
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specific material free energy, let’s first derive an expression for the Eshelby driving force 
on a domain wall. 

Sharp interface theories of domain wall dynamics require a kinetic law that describes the 
normal velocity of points along the interface.  Such kinetic laws usually relate the 
normal velocity to the jump in the Eshelby tensor across the wall.  The following 
derivation provides this relationship based on this diffuse interface theory.  First, 
multiply the associated balance equations by   −E

x
,   εxx , 

   
2ε

xy
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P

x ,x
 and 

  
P

y,x
 respectively.  

Then, defining the electrical enthalpy h as    h = ψ−E
i
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i
, the sum of these equations can 

be rearranged as follows, 
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After defining 
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⎦⎥ 2 , and applying the 

identity
   
ab = a b + b a , the integral of Equation (3.8) from   x = −∞ to   x =∞  

can be shown to yield 

     
f ≡ h − σxx
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where the Eshelby driving traction f is defined within this equation and the domain wall 
mobility  µ  is defined as 

    

1
µ

= β
xx
P

x ,x
2 + β
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+ β

yx( )Px ,x
P

y,x
+ β
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P
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⎦⎥−∞

∞

∫ dx  

The left-hand side of the equation is the jump in Eshelby’s energy-momentum tensor 
across a flat planar domain wall moving in the x-direction.  

Let’s now return to the explicit solution of the governing equations for a 180° domain 
wall.  The 180° domain wall simplifies the picture considerably because symmetry 
considerations for the case where there is zero far field loading indicates that 

    
P

x
= ε

xy
= 0 .  This also implies that 

    
σ

xy
= σ

xy
0 = 0 .  Expanding the free energy into the 

terms that are needed we have, 

    

ψ = 1
2
a

0
P

y,x
2 +

a
1

2
P

y
2 +

a
2

4
P

y
4 −

b
1

2
ε

yy
P

y
2 −

b
2

2
(ε

xx
+ ε

zz
)P

y
2 +

1
2κ

0

(D
i
−P

i
)(D

i
−P

i
)

+
c

1

2
(ε
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Furthermore, let’s look at the case where the domain wall is stationary, giving us    v = 0 .  
Our governing equations become, 
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∂ψ
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First, let’s consider the far field boundary conditions that we are interested in.  Let’s 
not consider any cases with electric field applied in the x-direction, therefore, 

   Ex
= D

x
= 0 .  Next, we are looking for solutions where there is no far-field loading and 

gradients of the polarization vanish.  The zero far-field loading condition allows us to 
solve for the   εxx  strain component in terms of the y-polarization. 
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Then, the other two fixed strain components follow from conditions far from the domain 
wall, 
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where
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=
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Finally, with 
    
E

y
=

1
κ

0

(D
y
−P

y
) = 0 , the micro-force balance far from the domain wall 

can be written as, 
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where 
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−
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⎜⎜⎜⎜
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⎟⎟⎟⎟⎟
. 

The solutions for 
 
P

y
 to this equation are, 

   
P

y
= 0, P

y
= ± −

a
1

a
2

≡ ±P
0
. 

In order for the free energy to increase as the magnitude of the polarization gets very 
large under stress and electric field-free conditions we must have    a2

≥ 0 .  Then, if 

   a1
> 0  the second set of roots is imaginary and the only real root is at 

   
P

y
= 0 , which 

will be a stable state if    a1
> 0 .  However, this is not a material that has a non-convex 

energy with multiple stable equilibria, and so there is no domain wall solution.  The 
more interesting case is when    a1

< 0 .  In this case, the 
   
P

y
= 0  state is unstable and 

there are two stable states at 
   
P

y
= ± −(a

1
/a

2
) .  For the solution to the governing 

equations we will force our functions to approach these values as   x → ±∞ .  Our micro-
force balance equation is written as, 
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Using, 
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, we can re-write this 

equation as, 
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Integrate this equation from 
   
P

y
= P

0
 to some arbitrary 

 
P

y
 value to get, 
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Note that it can be shown algebraically that 
   

a
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=
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2

.  This equation can now be 

integrated as, 
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This solution is called a “kink” solution.  Notice that the domain wall length scale is 
defined as  

   
l
0

=
2a

0

a
2
P

0
2

 

Also, the energy per unit area of the wall can be computed from, 

    

γ
wall

= [ψ(P
y
)−ψ(P

0
)]

−∞

∞

∫ dx

=
2
3
a

2
P

0
4l

0

 

For this solution, half of the energy is due to the gradient term and the remaining half 
is due to the strain and polarization energy within the wall. 

There are a couple of points to note about this solution.  First, we arbitrarily placed the 
position where the polarization is zero at    x = 0 .  We could have chosen this position to 
be anywhere we like and the kink solution simply shifts by that amount.  The calculated 
energy of the domain wall will not be changed by such a shift.  This implies that the 
domain wall solution is on a “flat energy landscape” and any energetic force on the wall, 
not matter how small, will cause it to move.  The reason why domain walls do not 
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always move so easily is due to effects like lattice friction (a very small material 
resistance to defect motion) and interactions with defects like charges and dislocation 
(the defects act to “pin” the domain walls).  The second feature is the material length 
scale associated with the domain wall and the energetic competition that makes this 
length scale finite.  The elastic and polarization components of the wall surface energy 
will decrease if the wall thins because the volume of the wall will decrease (linearly) and 
the magnitude of this contribution does not depend on the wall thickness, hence the 
overall contribution is inversely proportional to the wall thickness.  However, the 
polarization gradient contribution to the surface energy will increase as the wall thins 
because this term is inversely proportional to the square of the wall thickness and so as 
the wall thins the overall contribution is proportional to the wall thickness.  

A similar, but slightly more complicated solution can be constructed for a 90° domain 
wall, however complete analytical solutions are not attainable.  For the 90° wall the 
charge compatibility conditions require an x-component of the electric field to arise, 
which requires us to solve a second non-linear ODE for the electric potential.  When 
there are two unknown fields the steps that we took to construct the kink solution are 
no longer valid and numerical methods (or perturbation solutions) are required. 
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Maxwell Stresses 

In this last brief section we will take a look at the derivation of Maxwell stresses in free 
space and then at the modeling of dielectric elastomers where the identification of 
Maxwell stresses is ambiguous and entirely unnecessary.  First, let’s look at free space 
where there is no ambiguity.  Consider the following energy balance in free space. 
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At this point a few comments are of use.  First, there are two non-standard 

representations that need to be clearly defined, 
  

d
dt

(qdV )  and 
   

d
dt

(ωdS).  We also note 

some notation on time derivatives, the material time derivative is 
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∂
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, i.e. the 

time rate of change at a fixed material point located at coordinates  XI
 in the reference 

configuration.  We will also use an overdot   ( )  to represent the material time derivative.  

Then, when we write 
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spatial time derivative as, 
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.  Next, two continuum 

mechanics results for rates of change of volume and surface elements can be applied. 
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These two results then allow us to consistently define what we mean by 
  

d
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(qdV )  and 

   

d
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(ωdS).  Now we can analyze or energy balance. 
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Using the constitutive law for free space,     Di
= κ

0
E

i
 and assuming that the stress and 

body force satisfy equilibrium we have: 
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Hence, the stress, or what is usually called the Maxwell stress in free space is, 
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Now, let’s consider the force required to maintain equilibrium of a region of space.  To 
derive this relationship we will use several facts.  First, in free space 
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=−ω .  We also know that the tangential components of the 

electric field are continuous across and surface, which then implies that the jump of the 
electric field can be written as 
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 where   E
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 is the normal component 

of the electric field. 
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This result should be pleasing as it states that the net force on a region is the sum of 
the electric field times the body charge throughout the volume and the surface charges 
times the average electric field across the surface along all surfaces with free charge. 


