Flight Control Systems
ASE 370L Spring 2002

Instructor: Dr. Juan Senent

Department of Systems Engineering and Control
Universidad Politécnica de Valencia
Spain

T.A.: Eduardo Gildin

Department of Aerospace Engineering and Engineering Mechanics
University of Texas at Austin
General information
- Office hours
- Objectives
- Textbook
- Grading and exams
- WEB page

Introduction to process control
- Manual and automatic control. Example
- Components of a control system
- Phases in the design of a control system
Office hours

Office: WRW 405A

Tuesdays: 16:00–17:00 p.m.
Thursdays: 16:00–17:00 p.m.

e-mail: senet@csr.utexas.edu
phone:

471–5145 (UT)
471–7875 (CSR)
Objectives

- Introduction to systems theory
 - Analysis and design of control systems
 - Frequency domain
 - State-space domain
- Implementation of control systems
 - MATLAB and SIMULINK programming
Textbook

Modern Control Systems, 9th Ed.
by R. C. Dorf & R. H. Bishop
Grading and Exams

• 3 exams (60%)
 1 in-class
 2 take-home

• Homework+Project (40%)

Project
• Team (2 people)
• simulation, control and animation of the process.
www.ae.utexas.edu/courses/ase370/

- Syllabus
 - Homework policy
 - Topics
 - ...
- Homework and solutions
- Topics in control systems
 - Articles in control systems for aerospace applications
 - MATLAB tutorial and help
Aircraft roll control

Bank angle, φ

Aileron

Plane of symmetry

Bank angle, φ

Control surface

Actuator

Power amplifier

Pump

Motor

Aircraft roll control
Aircraft roll control. Variables and elements (I)

- **Manipulated Variable**: Aileron Deflection
- **Controlled Variable**: Bank Angle
- **Disturbances**: wind
- **Measured Variable**: Gyro

Reference: Bank Angle command

Feedback line connects the reference to the aileron deflection, indicating the control loop.
Aircraft roll control. Variables and elements (II)

- **Reference Variable**: Bank angle command
- **Controlled Variable**: Bank angle
- **Manipulated Variable**: Aileron deflection
- **Disturbances**: Wind
- **Measured Variable**: Gyro

Control Loop

Controller → **Aileron Actuator** → **Aircraft Dynamics** → **Bank Angle**

Aileron Deflection
<table>
<thead>
<tr>
<th>Elements</th>
<th>Variables involved</th>
<th>Can be modified</th>
</tr>
</thead>
</table>
| Process | • Controlled variable
• Manipulated variable
• Disturbances | Cannot be modified |
| Sensor | • Controlled variable
• Measured variable | Cannot be modified |
| Controller | • Controlled variable
• Measured variable
• Reference | Can be modified
(Computer program) |
Control Objective:
The controlled variable value must be moved towards the reference value despite the disturbances.
How?: Moving the manipulated variable.
Control Objective:
The Bank Angle must be close to the Bank Angle command despite of the wind.

How?: Moving the aileron.

Aircraft roll control. Control Objective:

Control Objective:
The Bank Angle must be close to the Bank Angle command despite of the wind.

How?: Moving the aileron.

Aircraft roll control. Control Objective:

Control Objective:
The Bank Angle must be close to the Bank Angle command despite of the wind.

How?: Moving the aileron.

Aircraft roll control. Control Objective:

Control Objective:
The Bank Angle must be close to the Bank Angle command despite of the wind.

How?: Moving the aileron.
Phase 1: Study of the process
- Controlled variables are chosen
- Control objectives

Phase 2: Obtain the process model
- Very important
- 70% time in the control project
- Simulation and Validation

Phase 3: Analysis
- Dynamic and static behavior
- Manipulated variables are chosen

Phase 4: Design of the control system
- Controller selection
- Controller design and tuning
- Controller+process simulation

Phase 5: Implementation and test
- Instrumentation test (actuators and sensors)
- Controller programming
- Controller validation (objectives)