"zero g" flight

\[x = V \cos \theta \]
\[h = V \sin \theta \]
\[\dot{V} = \frac{g}{W} \left[T \cos \theta - D - W \sin \theta \right] \]
\[\dot{h} = \frac{g}{W} \left[T \sin \theta + L - N \cos \theta \right] \]

If \(T \cos \theta - D = 0 \) and \(T \sin \theta + L = 0 \), these equations reduce to the equations for an orbit. Hence,

The airplane is on an orbit when the pilot flies it \((\alpha, \beta)\) such that

\[T(\alpha, V, \beta) \cos(\varepsilon + \alpha) - D(\alpha, V, \beta) = 0 \]
\[T(\alpha, V, \beta) \sin(\varepsilon + \alpha) + L(\alpha, V, \beta) = 0 \]

where \(\alpha, V \) are known functions of time from the orbit equations.