3.2 $M = 0$, $N_{\lambda} = 0$, $K = 1$

$\beta = 1$ \hspace{1cm} Eq. (3.30) becomes

\[
C_{L_\lambda} = \frac{\pi A}{1 + \sqrt{1 + (A/2)^2}}
\]

$(A/2)^2 > 1$ or $A > 6$

\[
C_{L_\lambda} = \frac{\pi A}{1 + \frac{A}{2}} = \frac{2\pi A}{2 + A}
\]

For $A = \infty$ (2D wing or airfoil)

\[
C_{L_\lambda} = 2\pi
\]

which is the theoretical result.