List of Illustrations

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.</td>
<td>Characteristic Form of Acceleration/Force Frequency Response at Resonance</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.</td>
<td>Visual Representation of the Six Rigid-Body Modes of the Star-Lite Aircraft</td>
<td>8</td>
</tr>
<tr>
<td>Figure 3.</td>
<td>Typical Configuration of a Flexure Fixture</td>
<td>10</td>
</tr>
<tr>
<td>Figure 4.</td>
<td>First two mode shapes of a cantilever beam</td>
<td>11</td>
</tr>
<tr>
<td>Figure 5.</td>
<td>Examples of Node Layout Selection</td>
<td>13</td>
</tr>
<tr>
<td>Figure 6.</td>
<td>Applying Maxwell’s Reciprocity Theorem to Testing</td>
<td>14</td>
</tr>
<tr>
<td>Figure 7.</td>
<td>Configuration for a Ratio-Calibration Experiment</td>
<td>22</td>
</tr>
<tr>
<td>Figure 8.</td>
<td>HP 3657A Dynamic Signal Analyzer with Pentium Interface</td>
<td>25</td>
</tr>
<tr>
<td>Figure 9.</td>
<td>Power Amplifier</td>
<td>26</td>
</tr>
<tr>
<td>Figure 10.</td>
<td>35 lb. Electro-Magnetic Shaker</td>
<td>26</td>
</tr>
<tr>
<td>Figure 11.</td>
<td>Flexure Fixture</td>
<td>26</td>
</tr>
<tr>
<td>Figure 12.</td>
<td>Pump, Suction Plate with O-ring, and Non-Destructive Mounting to Aircraft</td>
<td>27</td>
</tr>
<tr>
<td>Figure 13.</td>
<td>Typical Star-Lite Aircraft</td>
<td>27</td>
</tr>
<tr>
<td>Figure 14.</td>
<td>Innertube Supports Under Tires Approximate Free-Support</td>
<td>28</td>
</tr>
<tr>
<td>Figure 15.</td>
<td>Accelerometer-Cable Support Mount</td>
<td>28</td>
</tr>
<tr>
<td>Figure 16.</td>
<td>Flexure Rest Supporting Flexure in Vertical Position</td>
<td>29</td>
</tr>
<tr>
<td>Figure 17.</td>
<td>Accelerometer</td>
<td>29</td>
</tr>
<tr>
<td>Figure 18.</td>
<td>Load Cell</td>
<td>29</td>
</tr>
<tr>
<td>Figure 19.</td>
<td>4-Channel Oscilloscope</td>
<td>30</td>
</tr>
<tr>
<td>Figure 20.</td>
<td>2-Channel Oscilloscope</td>
<td>30</td>
</tr>
<tr>
<td>Figure 21.</td>
<td>I-DEAS Star-Lite Model on the Oberon Workstation</td>
<td>31</td>
</tr>
<tr>
<td>Figure 22.</td>
<td>Ratio Calibration Equipment and Test</td>
<td>32</td>
</tr>
<tr>
<td>Figure 23.</td>
<td>Initial GVT Setup</td>
<td>34</td>
</tr>
<tr>
<td>Figure 24.</td>
<td>Detailed View of the Shaker System</td>
<td>35</td>
</tr>
</tbody>
</table>
Figure 48. Wing Skin Damage due to Curvature Mismatch between Wing and 8 Inch Suction Plate ...56
Figure 49. Z-Axis Frequency Response for First Ground Vibration Test 57
Figure 50. Z-Axis Coherence for First Ground Vibration Test57
Figure 51. Z-Axis Coherence With 4-Channel Scope in Data Loop 58
Figure 52. Coherence Plot Showing 60 Hz Spike with the DSA Source On 59
Figure 53. Coherence Plot Showing 60 Hz Spike with the DSA Source Off59
Figure 54. Coherence Plot Showing No Ground Loops with the DSA Source Off ...60
Figure 55. Coherence Rolloff at 50 Hz for Shaker 2 ...61
Figure 56. High Coherence for Shaker 1 ..61
Figure 57. Poor Coherence Centered around 25 Hz with Original Flexure Fixture .63
Figure 58. Original Flexure Fixture and Original Pump Hose64
Figure 59. New Flexure Fixture and New Pump Hose64
Figure 60. Improved Coherence around 25 Hz with New Flexure Fixture65
Figure 61. Drop in Y-Axis Coherence Due to Light Attachment of the Accelerometer ...66
Figure 62. Improvement in Y-Axis Coherence Due to Firm Attachment of the Accelerometer ...66
Figure 63. Z-Axis Coherence Prior to the Inclusion of Amplitude Half-Ranging ...68
Figure 64. Improved Z-Axis Coherence Due to the Inclusion of Amplitude Half-Ranging ...68
Figure 65. High Coherence Above 10 Hz for Load Cell and Accelerometer at Wing Rib/Spar Junction ...69
Figure 66. Resonant Peaks Apparent in Frequency Response of Load Cell and Accelerometer at Wing Rib/Spar Junction69
Figure 67. Loss in Coherence at the Tail of the Star-Lite70
Figure 68. Low Frequency Vibration Apparent in Instantaneous Time Signal from Accelerometer X-Axis ..70
Figure 69. Baseline Frequency Response with the Long Flexure71
Figure 70. Baseline Coherence with the Long Flexure72
Figure 71. Frequency Response with Four Lead Shot Fingers Wrapped Around the Long Flexure ...72

Figure 72. Coherence with Four Lead Shot Fingers Wrapped Around the Long Flexure ...73

Figure 73. Signal Aliasing Due to Lack of Proper Sampling Below 5 Hz 74

Figure 74. Low Frequency Oscillations Occasionally Appear in Data75

Figure 75. Short Excitation Burst and Sample Period Associated with Preliminary GVT Data and the 50 Lb. Shaker76

Figure 76. Long Excitation Burst and Sample Period Associated with the 35 lb. Shaker ...76

Figure 77. Lack of Distinct Peaks in the Frequency Response Associated with the Short Flexure and the 50 Lb. Shaker 77

Figure 78. Presence of Distinct Peaks in the Frequency Response Associated with the Short Flexure and the 35 Lb. Shaker77

Figure 79. Coherence Associated with the Short Flexure and 50 lb. Shaker78

Figure 80. Coherence Associated with the Short Flexure and 35 lb. Shaker78

Figure 81. Improved Coherence of the Tail Associated with the 35 lb. Shaker78

Figure 82. Valleys in the Frequency Response Cause a Drop in the Coherence79

Figure 83. No Coherence Between Accelerometer Output and Disconnected Load-Cell Wire ...80

Figure 84. Frequency Response of Star-Lite for a 0 Hz to 1600 Hz Burst Random Excitation ..82

Figure 85. High Coherence of Response Data for a 0 Hz to 1600 Hz Frequency Range ...82

Figure 86. Frequency Response over 200 Hz Frequency Bandwidth83

Figure 87. Coherence for Frequency Response over 200 Hz Frequency Bandwidth ...83

Figure 88. Frequency Response at the Third Rib-Spar Junction84

Figure 89. Frequency Response at the Fourth Rib-Spar Junction Chosen as the GVT Excitation Input Location84

Figure 90. Approximate Mode Shape for the Left-Wing Spar at a Frequency of 92.43 Hz ...85

Figure 91. Approximate Mode Shape for the Left Aileron at a Frequency of 92.43 Hz ...86
Figure 92. Frequency Response for Maxwell’s Reciprocity Theorem with the Excitation Input at Node 13 and the Response Output at Node 87 ...

Figure 93. Frequency Response for Maxwell’s Reciprocity Theorem with the Excitation Input at Node 87 and the Response Output at Node 13 ...

Figure 94. Concatenated Frequency Responses from the Maxwell’s Reciprocity Theorem Test Validate the Linearity Assumption for the Star-Lite

Figure 95. Typical Z-Axis Frequency Response Without Calibration Ratio

Figure 96. Typical Z-Axis Frequency Response With Calibration Ratio

Figure 97. Modal Assurance Criteria Matrix for the Modes of the Star-Lite Aircraft ...

Appendix A: Discrete Sampling Theory

Figure A1. General Complex Signal with Discrete Sampling Elements A-2

Figure A2. Discrete Sampling Conducted in Accordance with the Nyquist Criterion for Sampling a Harmonic Signal A-4

Figure A3. Discrete Sampling that Violates the Nyquist Criterion for Sampling a Harmonic Signal ... A-4

Figure A4. Leakage of Frequency Data from Improper Sampling of the Period of a Complex Signal ... A-7

Appendix B: Coherence Theory

Figure B1. Transfer Function Relationship of Y(f) to X(f) B-2

Appendix D: Data from Preliminary GVT Tests

Appendix D - Data Plots

Figure D1. Coherence Data for Ratio Calibration of Accelerometer X-Axis D-1

Figure D2. Coherence Data for Ratio Calibration of Accelerometer Y-Axis D-1

Figure D3. Coherence Data for Ratio Calibration of Accelerometer Z-Axis D-1

Figure D4. X-Axis Frequency Response for First Ground Vibration Test D-2

Figure D5. X-Axis Coherence for First Ground Vibration Test D-2

Figure D6. Y-Axis Frequency Response for First Ground Vibration Test D-2

Figure D7. Y-Axis Coherence for First Ground Vibration Test D-3
Figure D8. Z-Axis Frequency Response With 4-Channel Scope in Data Loop D-3
Figure D9. X-Axis Frequency Response With 4-Channel Scope in Data Loop D-3
Figure D10. X-Axis Coherence With 4-Channel Scope in Data Loop D-4
Figure D11. Y-Axis Frequency Response With 4-Channel Scope in Data Loop D-4
Figure D12. Y-Axis Coherence With 4-Channel Scope in Data Loop D-4
Figure D13. Frequency Response for Data with 60 Hz Coherence Spike and the DSA Source On ... D-5
Figure D14. Frequency Response for Data with 60 Hz Coherence Spike and the DSA Source Off ... D-5
Figure D15. Frequency Response for Data with No 60 Hz Coherence Spike and the DSA Source Off ... D-5
Figure D16. Frequency Response Rolloff at 50 Hz for Shaker 2 D-6
Figure D17. Good Frequency Response for Shaker 1 D-6
Figure D18. Frequency Response with Original Flexure Fixture D-6
Figure D19. Frequency Response with New Flexure Fixture D-7
Figure D20. Drop in X-Axis Coherence Due to Light Attachment of the Accelerometer ... D-7
Figure D21. Little Drop in Z-Axis Coherence Due to Light Attachment of the Accelerometer ... D-7
Figure D22. Improvement in Y-Axis Coherence Due to Firm Attachment of the Accelerometer ... D-8
Figure D23. Improvement in Z-Axis Coherence Due to Firm Attachment of the Accelerometer ... D-8
Figure D24. X-Axis Coherence Prior to the Inclusion of Amplitude Half-Ranging .. D-8
Figure D25. Improved X-Axis Coherence Due to the Inclusion of Amplitude Half-Ranging ... D-9
Figure D26. Y-Axis Coherence Prior to the Inclusion of Amplitude Half-Ranging ... D-9
Figure D27. Improved Y-Axis Coherence Due to the Inclusion of Amplitude Half-Ranging ... D-9
Figure D28. Z-Axis Frequency Response Prior to the Inclusion of Amplitude Half-Ranging ... D-10
Figure D29. Z-Axis Frequency Response Due to the Inclusion of Amplitude Half-Ranging .. D-10

Figure D30. Load-Cell Instantaneous-Time Signal Used for Determining Half-Ranging ... D-10

Figure D31. X-Axis Instantaneous-Time Signal Used for Determining Half-Ranging ... D-11

Figure D32. Y-Axis Instantaneous-Time Signal Used for Determining Half-Ranging ... D-11

Figure D33. Z-Axis Instantaneous-Time Signal Used for Determining Half-Ranging ... D-11

Figure D34. Frequency Response Associated with a Loss in Coherence at the Tail of the Star-Lite .. D-12

Figure D35. Low Frequency Vibration Apparent in Instantaneous Time Signal from Accelerometer Y-Axis D-12

Figure D36. Low Frequency Vibration Apparent in Instantaneous Time Signal from Accelerometer Z-Axis D-12

Figure D37. Power Spectrum Providing Non-Zero Frequency of Rigid-Body Longitudinal-Translation Mode D-13

Figure D38. Power Spectrum Providing Non-Zero Frequency of Rigid-Body Lateral-Translation Mode D-13

Figure D39. Power Spectrum Providing Non-Zero Frequency of Rigid-Body Vertical-Translation Mode D-13

Figure D40. Power Spectrum Providing Non-Zero Frequency of Rigid-Body Roll Mode .. D-14

Figure D41. Power Spectrum Providing Non-Zero Frequency of Rigid-Body Pitch Mode .. D-14

Figure D42. Power Spectrum Providing Non-Zero Frequency of Rigid-Body Yaw Mode .. D-14

Figure D43. Frequency Response with Four Lead Shot Fingers Wrapped Around the Long Flexure D-15

Figure D44. Coherence with One Lead Shot Finger Wrapped Around the Long Flexure .. D-15

Figure D45. Coherence for the Third Rib-Spar Junction .. D-15

Figure D46. Coherence for the Fourth Rib-Spar Junction Chosen as the GVT Excitation Input Location D-16
Appendix E: Mode Shapes of the Star-Lite Aircraft

Figure E1. Mode 1 of the Star-Lite (First Symmetric Wing Bending Mode) E-1

Figure E2. Mode 2 of the Star-Lite (Asymmetric Wing Bending with Tail Cone Rotation) .. E-2

Figure E3. Mode 3 of the Star-Lite (Asymmetric Wing Bending with Out of Phase Fin and Rudder Bending) E-3
Figure E4. Mode 4 of the Star-Lite (Asymmetric Wing Bending, Out of Phase Fin and Rudder Bending, Rudder Torsion) ... E-4

Figure E5. Mode 5 of the Star-Lite (Asymmetric Wing Bending and First Symmetric Vertical Stabilizer Bending) E-5

Figure E6. Mode 6 of the Star-Lite (Asymmetric Wing Bending and Torsion, Asymmetric Vertical Stabilizer Bending, and Rudder Torsion) E-6

Figure E7. Mode 7 of the Star-Lite (Wing and Stabilizer Torsion, Rudder Bending) ... E-7

Figure E8. Mode 8 of the Star-Lite (Wing and Stabilizer Torsion) E-8

Figure E9. Mode 9 of the Star-Lite (Second Asymmetric Wing Bending, Wing and Stabilizer Torsion, Vertical Fuselage Bending) E-9

Figure E10. Mode 10 of the Star-Lite (Wing Bending, Wing and Stabilizer Torsion, Rudder Bending, Lateral Fuselage Bending) E-10

Figure E11. Mode 11 of the Star-Lite (Fuselage Bending) E-11

Figure E12. Mode 12 of the Star-Lite (High Wing Bending Mode) E-12