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Out-of-plane deformation patterns, such as buckling, wrinkling, scrolling, and folding, formed by
multilayer van der Waals materials have recently seen a surge of interest. One crucial parameter governing
these deformations is bending rigidity, on which significant controversy still exists despite extensive
research for more than a decade. Here, we report direct measurements of bending rigidity of multilayer
graphene, molybdenum disulfide (MoS2), and hexagonal boron nitride (hBN) based on pressurized
bubbles. By controlling the sample thickness and bubbling deflection, we observe platelike responses of the
multilayers and extract both their Young’s modulus and bending rigidity following a nonlinear plate
theory. The measured Young’s moduli show good agreement with those reported in the literature
(Egraphene > EhBN > EMoS2 ), but the bending rigidity follows an opposite trend, Dgraphene < DhBN < DMoS2

for multilayers with comparable thickness, in contrast to the classical plate theory, which is attributed to the
interlayer shear effect in the van der Waals materials.
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Two-dimensional (2D) materials possess excellent elec-
tronic, mechanical, and chemical properties that lend well
to a range of applications [1–3]. In many instances, 2D
materials come with multilayered structures [also called
multilayer van der Waals (vdW) materials] and favor out-
of-plane deformations such as scrolls [4,5], folds [6–8],
bubbles [9–14], wrinkles [15,16], buckles [17,18], crum-
ples [19,20], ripples [21,22], tents [23–25], and so on due to
their thinness [Figs. 1(a) and 1(b)]. On the one hand, the
out-of-plane mode of deformation is viewed as an incon-
venience, with research focusing on how it might be
avoided [26]. On the other hand, the development of
2D-material-based stretchable electronics and strained
semiconductors can take advantage of these curved con-
figurations [27,28]. For these purposes, it is often necessary
to manipulate and control the out-of-plane deformation of
multilayer 2D materials, which requires understanding the
mechanics and underlying mechanisms of bending these
atomically layered structures, where in particular, the
bending rigidity is deemed as one crucial parameter [29].
Classical plate theory assumed that an elastic plate resists

bending by tension and compression on the opposite sides
of a neutral plane [30]. The bending rigidity of an elastic
plate is related to its thickness (t) and the elastic moduli of
the material by D ¼ Et3=12ð1 − ν2Þ, where E is Young’s

modulus and ν is Poisson’s ratio. This relation holds well for
a perfectly gluedmultilayerwithN identical layers [Fig. 1(c)]
such that the overall bending rigidityD is proportional toN3.
However, the classical relation is expected to break down
for multilayer 2D materials for at least two reasons. (i) The
mechanical resistance of the monolayer 2D material to
bending and stretching deformation arises from different
physical origins [31–34]. In graphene, for example, the
Young’s modulus is related to the in-plane σ bonding, while
the bending resistance is attributed to the distortion of out-of-
plane π bonds [31]. (ii) The vdW interactions between the
atomic layers are weak in resisting interlayer shear or sliding
[35,36], as demonstrated by recently observed self-rotation
between 2D material layers [37,38]. The interlayer shear
stiffness and strength of bulk 2D materials (e.g., graphite)
is typically orders of magnitude lower than their in-plane
Young’s modulus and tensile strength [39]. This extreme
mechanical anisotropy may subject multilayer 2D materials
to the interlayer sliding. In the limiting case when the
interface is ultralubricated [Fig. 1(d)], each layer would
bend independently such that the overall bending rigidity
of the multilayer would scale linearly with the number of
layers, D ∼ N.
Despite extensive research into the mechanical proper-

ties of 2D materials for more than a decade, significant
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controversy still exists on the bending rigidity of monolayer
and multilayer 2D materials [15,21,31,34]. It remains
elusive how the bending rigidity of a multilayer 2Dmaterial
relates to its layer number, although the classical relation
(D ∼ N3) has been widely applied in the literature despite
the perceived breakdown. Motivated by this puzzle, here
we focus on experimentally measuring the bending rigidity
of multilayer 2D materials through pressurized bubble
devices. Graphene, hexagonal boron nitride (hBN), and
molybdenum disulfide (MoS2) are chosen as representa-
tives of metallic, insulating, and semiconducting 2D
materials, respectively. The effect of interlayer coupling
on the bending rigidity of 2D materials is revealed.
Figure 2 illustrates the pressurized bubble device that can

create axisymmetric out-of-plane deformation of 2D mate-
rials. The samples are made by mechanical exfoliation of
multilayer graphene, hBN, and MoS2 over patterned holes
(radius: 0.5–1.5 μm) on a SiO2=Si substrate. The number
of layers (N) in these multilayers, ranging from 7 to 70
[40], can be identified by atomic force microscopy (AFM)
and Raman spectroscopy. Following the well-developed
gas diffusion procedure [12,40], we can apply a pressure
difference (Δp) across the multilayer and bulge upwards in
a controllable manner. The height profile of each bubble is
then measured by AFM.
We first observe the shape characteristics of 2D material

bubbles. Classical theory predicts the deflection of a plate
responding to a uniform pressure as follows:

wðrÞ
h

¼
�
1 − r2

a2

�
α

ð1Þ

where wðrÞ is the out-of-plane deflection profile, h is the
bubble height (deflection at the center), r is the distance
from the hole center, a is the hole radius, and the exponent
α is 2 for a linear elastic plate. However, such a platelike
profile is rarely observed in 2D material bubbles because of
the extreme thinness and flexibility of 2D materials [9–13].
Alternatively, the membrane limit is commonly adopted for
these 2D material bubbles, where the bending rigidity is
assumed to be negligible and the deflection profile of the
bubble is approximately taken as a spherical cap, i.e., α ¼ 1
in Eq. (1) [9–13]. The membrane analysis has been adopted
to measure fundamental mechanical properties of 2D
materials [9–13] such as Young’s modulus, interfacial
adhesion and friction, and electromechanical coupling,
but not for bending rigidity.
We show in Fig. 2(b) experimentally measured profiles

from graphene bubbles with a variety of thicknesses and
heights. We normalize the deflection by the bubble height
and the radial position by the bubble radius. For bubbles
with radii of 0.5 μm, the normalized deflection profiles
collapse onto one curve as predicted by the membrane
analysis when the ratio between the bubble height and the
thickness of the multilayer, h=t, is larger than 2—the case
of most previous works [9–13]. For bubbles with the height
comparable to the thickness, i.e., h=t≲ 1.5, the bending
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FIG. 1. The schematics (a) and corresponding electron microscope images (b) illustrate various deformation modes. (Reproduced with
permission from Refs. [4,8,14,15,17]). Panels (c) and (d) illustrate the microstructural deformation upon bending of multilayer 2D
materials with perfectly glued (c) and ultralubricated (d) interfaces.

FIG. 2. (a) The schematic of pressurized bubbles with two distinct shape characteristics at small and large deflections. (b) Normalized
deflection profiles measured from two sets of 0.5-μm-radius bubbles. We observe a membranelike shape with a kinked edge for h=t≳ 2
(orange markers) and a platelike shape with a smooth edge for h=t≲ 1.5 (blue markers).
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effect becomes significant so that the deflection profiles
collapse onto a different curve predicted by the plate theory.
This observation implies that membranelike behavior can
transit to platelike behavior for the bubbles of multilayer 2D
materials by simply tuning the ratio h=t. The membrane-to-
plate transition also makes it possible to simultaneously
determine the in-plane Young’s modulus and bending
rigidity of the 2D multilayers. We note that the critical
h=t for such transition depends on the bubble radius and also
varies slightly from material to material (Fig. S5 [40]).
We then consider the pressure-height relation for these

multilayer 2D material bubbles. Previous numerical studies
proposed a nonlinear plate analysis for pressurized bubbles
that included both in-plane stretching and bending of the
2D material, leading to [54,55]

Δpa4

h3t
¼ AðνÞEþ 64D

t3

�
t
h

�
2

ð2Þ

where AðνÞ ≃ ð0.7179 − 0.1706ν − 0.1495ν2Þ−3, which is
3.10 for graphene with ν ¼ 0.165, 3.28 for hBN with
ν ¼ 0.221, and 3.46 for MoS2 with ν ¼ 0.27 [56]. Note that
Eq. (2) was found to be a good approximation even for

monolayer graphene bubbles by using the 2D in-plane
stiffness (E2D ¼ Et) and a bending rigidity (D) that is
independent of E [54]. We also note that the interfacial
shear deformation between the supported 2D material and
the SiO2 substrate is negligible in our experiments because
of the relatively small pressure and deflection [Figs. S4(d)
—S4(f)], and hence the clamped boundary condition at the
edge of the bubble is reasonable. In Figs. 3(a)–3(c), the dot-
dashed lines represent the membrane limit of Eq. (2) where
the bending term is neglected. The solid lines represent the
idealized nonlinear plate model assuming a bending
rigidity D ¼ Et3=12ð1 − ν2Þ such that the response
½ðΔpa4=h3tÞvs:h=t� does not depend on the thickness.
Evidently, the experimentally measured responses for all
three 2D materials approach the membrane limit when the
ratio h=t is greater than 2. For h=t < 1.5, the bubble
responses exhibit a transition to the platelike behavior
but deviate considerably from the idealized nonlinear plate
solution. This observation implies that the use of the
classical D − E relation would overestimate the bending
rigidity of the multilayer 2D materials. Moreover, the effect
of pretension is found to be negligible in our experiments,
as measured responses ½ðΔpa4=h3tÞvs:h=t� for our samples

(a)

(d) (e)

(b) (c)

FIG. 3. We show Δpa4=h3t as a function of h=t for graphene (a), hBN (b) and MoS2 (c), respectively. The solid lines represent the
idealized nonlinear plate solution, and horizontal dot-dashed lines are the membrane solution. In the color system, the darker symbol
denotes the thicker sample. Extracted Young’s modulus (d) and bending rigidity (e) as a function of thickness. At a given thickness,
AFM measurements of up to 17 different bubbles produce the results plotted as symbols. The dash-dotted lines in (d) indicate the
average values, while the dashed and solid lines in (e) are the theoretical predictions for the perfectly glued (D ∼ N3) and ultralubricated
(D ∼ N) cases, respectively.
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with different radii also collapse onto the radius-independent
curve as predicted by Eq. (2) (Fig. S6 [40]).
Equation (2) allows us to determine both Young’s

modulus and bending rigidity of the multilayer 2D material
as well as their dependency on the layer thickness. We start
with Young’s moduli of multilayer 2D materials by focus-
ing on samples under relatively large pressure [55]. In this
case, h=t is relatively large, and the second term on the
right-hand side of Eq. (2) is negligible (the membrane
limit); thus Young’s modulus can be determined directly by
measuring Δpa4=h3t. In Figs. 3(a)–3(c), for graphene,
hBN, and MoS2 bubbles with h=t≳ 2, the data for
Δpa4=h3t collapse onto the dot-dashed lines, as predicted
by the membrane limit. The domain of h=t for the
membranelike behavior is consistent with our shape mea-
surements in Fig. 2. We then extract Young’s moduli of the
multilayer 2D materials as summarized in Fig. 3(d). We
find that the average values are 939.5� 21.7 GPa,
769.9� 12.9 GPa, and 314.3� 8.4 GPa for the multilayer
graphene, hBN, and MoS2 with layer numbers ranging
from about 10 to 70. For each 2D material, the extracted
Young’s modulus shows essentially no dependency on the
thickness, and the average values agree well with those
measured by AFM indentation of monolayers [56–58].
When the height of the deformed bubble becomes

comparable to the thickness of 2D multilayers, the con-
tribution from bending is substantiated, and both terms
on the right-hand side of Eq. (2) should be accounted for.
A membrane-to-plate transition is expected to occur in
the mechanical response of bubbles (Fig. 2). With the
thickness-independent Young’s modulus extracted from
the membrane model, we can then calculate the bending
rigidityD by comparing Eq. (2) with the measured response
Δpa4=h3t for bubbles with relatively small deflection
ðh=t≲ 1.5Þ (Fig. S5 [40]). Figure 3(e) summarizes the values

of D for graphene, hBN, and MoS2 multilayers, and the
possible errors for these measurements are discussed in
Fig. S3 [40]. As expected, the bending rigidity increases
with the thickness of 2D materials. However, the thickness
dependence does not follow either one of the two limiting
cases. Specifically, the bending rigidity of a multilayer
graphene (t > 5 nm) is much lower than that expected from
classical plate theory [D ∼ t3; dashed line in Fig. 3(e)] but
much higher than the ideally lubricated cases [D ∼ t; solid
line in Fig. 3(e)]. More interestingly, for samples with similar
thickness, we find DMoS2 > DhBN > Dgraphene, whereas the
values of Young’s moduli are ordered inversely, that is,
Egraphene > EhBN > EMoS2 . This again indicates that the
bending rigidity of multilayer 2D materials violates the
predictions of the classical plate theory.
We attribute the abnormal bending behaviors of multi-

layer 2D materials to the effect of interlayer shear or
slippage between atomic sheets, which breaks down the
assumptions in classical plate theory. The interlayer sliding
of 2D material bilayers has been reported by detailed first-
principles analysis in the literature where interfacial shear
strengths were proposed to capture the sliding capability
[59–61]. To further elucidate the interaction between the
interlayer sliding and in-plane elasticity, we carry out
molecular dynamics (MD) simulations of gas-pressurized
circular graphene bubbles [40]. We plot the mechanical
responses of monolayer and bilayer graphene bubbles to
pressure in Fig. 4(a), along with the predictions by Eq. (2)
for the plate and membrane solutions. We find that, for
monolayers, the bending rigidity is negligible [31], and a
Young’s modulus of ∼1 TPa can be deduced from the
membrane analysis of the MD results, validating our sim-
ulation setups. We then focus on bilayer graphene bubbles,
especially at small deflections (i.e., h=t < ∼1.5) where
the effect of bending rigidity is noticeable. Our simulation

(a) (b)

FIG. 4. (a) The mechanical response of monolayer and bilayer graphene bubbles to pressure in MD simulations. The solid line
represents the idealized nonlinear plate solution, while the dashed line is the membrane solution. For bilayer samples, a stronger
resistance to pressure is observed by enhancing the interlayer interaction strength. The error bars are from thermal fluctuations in MD
simulations. (b) Radial distribution of the atomic slip length (s) in the bulged bilayer graphene with the height-thickness ratio h=t of
∼1.2 and 1.8, respectively. The right panel of (b) shows the area distribution of s for bilayer graphene with h=t of ∼1.2. Enhancing the
strength of interlayer interactions can restrain interlayer sliding, leading to reduced slip lengths and higher bending rigidity.
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results align well with experimental data in Fig. 3(a)—both
are overestimated by the idealized nonlinear plate solution
[solid line in Fig. 4(a)] where the classical D − E relation
is used. Remarkably, the MD simulations show that the
mechanical response of bilayer graphene bubbles depends on
the interlayer potential parameters. In particular, the bending
rigidity of the bilayer graphene is effectively enhanced when
the strength of the interlayer interaction is increased in the
MD simulations.
To further shed light on the interlayer shear or slippage

deformations, we define an atomic slip length, s, for the
atoms in the top graphene sheet in the bilayer to identify the
local shear or sliding between the top and bottom lattices
[40]. In perfect AB stacking, the value of s is zero for all
atoms. As the bilayer structure is pressurized into bubbles,
interlayer slippage at the center of the bubble is absent
due to the symmetry. However, the value of s becomes
nontrivial and increases along the radial direction, reaching
the maximum at the edge of the bilayer graphene bubble
[dashed lines in Fig. 4(b)]. As expected, the slip length can
be further actuated by increasing the deflection of the
bubble. Notably, such interlayer slippage can be signifi-
cantly reduced by enhancing the strength of interlayer
interactions as shown in Fig. 4(b). Combining with the
simulated mechanical resistance of graphene bilayer bub-
bles summarized in Fig. 4(a), we conclude that the
interlayer shear or slippage between 2D materials competes
with intralayer deformation (stretching and bending) and
can modulate the overall mechanical responses. Clearly,
such an effect is absent in the classical plate theory, which
essentially assumes no interlayer slippage.
Both our experiments and MD simulations show that

the classical relation for the bending rigidity, D ¼ Et3=
12ð1 − ν2Þ, in general, is not valid for multilayer 2D
materials, where the interlayer shear interactions are weak
and slippage is inevitable. This mechanism may be quali-
tatively simple to understand, but the quantitative measure-
ment of its effect on the bending properties of a 2D material
multilayer has been challenging and has not been reported, to
the best of our knowledge. To account for such effects, we
propose a modified formula for the effective bending rigidity
of multilayer 2D materials as

Deff ¼ fðNÞ Et3

12ð1 − ν2Þ ð3Þ

where fðNÞ is a function of the layer number and it depends
on the strength of interlayer shear interactions, as a result
of competition between the intralayer stretching or com-
pressing and the interlayer shear or sliding. Theoretically,
there are two limiting cases. The upper bound assumes
perfect bonding so that the interlayer slippage is prohibited
[Fig. 1(c)], while the lower bound corresponds to frictionless
interlayer interactions or ultralubricated [Fig. 1(d)].
In Fig. 5, we plot the two limits by solid lines using the

parameters of graphene; the limits for hBN and MoS2 are

slightly different [40]. Experimentally, the function fðNÞ
can be determined based on Eq. (2): fðNÞ ¼ ½3ð1 − v2Þh2=
16t2�½ðΔpa4=Eth3Þ − AðνÞ�, as shown in Fig. 5 for multi-
layer graphene, hBN, and MoS2 (also in Fig. S8 [40]).
Evidently, the values of fðNÞ for these multilayer 2D
materials lie between the two theoretical limits. These
results imply that both intralayer stretching or compressing
and the interlayer shear or sliding happen when bending the
multilayer 2D materials. Among the three 2D materials, the
graphene multilayers have the lowest values of fðNÞ, and
the MoS2 multilayers have the highest value. Despite the
highest in-plane elastic modulus of graphene, the bending
rigidity of multilayer graphene is the lowest due to the
interlayer slippage, close to the lower limit. This result can
also be quantitatively explained by a decomposition of the
simulated deformation of pressurized bilayer graphene (see
details in Note 4.3 [40]). It is expected that the modified
formula for the bending rigidity in Eq. (3) not only works
very well for all our samples (see Fig. S9 [40]) but also
applies, more broadly, for other multilayer vdW materials
and their homostructures or heterostructures. The methods
and data provided in this work offer quantitative measures
for the elastic responses of multilayer 2D materials through
a simple function fðNÞ. This function may quantify the
level of interlayer slippage, as well as the coupling between
stretching and bending, which highly depend on the types
of 2D materials [46–48] and its multilayer structures.
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FIG. 5. The layer-dependent function to measure the effect of
interlayer coupling on the bending rigidity of multilayered gra-
phene, hBN, andMoS2. The black lines are theoretical predictions
of the limiting cases for graphene. Our experimental results are
denoted by colored markers, sitting between the two limits.
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