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1 Introduction microcracks, they proposed a statistical theory on the lifetime pre- é
P s . . diction of a swollen gel. Bouklas et al. [20] studied the effects of %
olymer gels have been commonly used in biomedical applica- e . 3

. . solvent diffusion on the crack-tip fields and the energy release rate S
tions [1-3]. Recently, polymer gels have been exploited as a class 2

for stationary cracks in polymer gels using a nonlinear, transient
finite element method. They proposed a modified J-integral for
calculating the time-dependent crack-tip energy release rate for
quasi-static crack growth in gels, with which delayed fracture was
discussed as a possible scenario under certain chemo-mechanical
conditions. For both analytical and numerical convenience,
linear poroelasticity has also been used in studies concerning frac-
tures of poroelastic materials. Atkinson and Craster [21] analyzed
the fracture behavior in linearly poroelastic media under a pre-
scribed internal pressure, and they obtained the stress intensity
factor as a function of time using Laplace and Fourier transforms.
Hui et al. [22] studied the short-time transient fields near the tip of
a stationary crack in a linearly poroelastic solid. Yang and Lin [23]
presented a numerical study on the time-dependent crack-tip fields
in a linearly poroviscoelastic medium under constant applied
stress. More recently, Yu et al. [24] presented an asymptotic anal-
ysis of the transient crack-tip fields for stationary cracks in
polymer gels, with short-time and long-time limits for the stress
intensity factor and the crack-tip energy release rate under differ-
ent chemo-mechanical boundary conditions. Their numerical
results suggested that the onset of crack growth may be delayed
until the crack-tip energy release rate reaches a critical value.

To study steady-state crack growth in polymer gels, Noselli et al.
[25] derived the energy release rate within the linearized, small-
strain setting (linear poroelasticity) and predicted a poroelastic
toughening effect as a result of solvent diffusion around the
crack tip. In addition, they proposed a linear poroelastic cohesive
T Comied by the Anplied Mechanics Division of ASME for nublication in zone model for the dependence of the effective toughness on
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of soft active materials with potential applications in soft machines
and soft robotics [4-7]. These applications have motivated the
development of smart and tough gels [§—10]. However, it remains
a challenge to accurately measure the fracture toughness of
polymer gels [11], and a fundamental understanding of the fracture
mechanisms in gels is still lacking [12]. Experimental measure-
ments have reported a wide range of fracture toughness for
polymer gels from ~1 J/m* for gelatin and agar gels [13,14] to
~10* J/m? for a tough gel with hybrid alginate—polyacrylamide net-
works [9]. As noted by Long and Hui [11], most of these measure-
ments were interpreted by assuming that the gels were purely
elastic. However, fracture is often time- and rate-dependent for
polymer gels [15-18]. For example, in an experimental study on
steady-state crack growth in gelatin gels, Baumberger et al. [18]
found that the effective fracture energy was rate-dependent and
increased with the crack speed (so-called “velocity toughening”).
Recently, Tang et al. [17] conducted fracture experiments of poly-
acrylamide hydrogels under monotonic, static, and cyclic load; they
observed time-dependent, delayed fracture below the critical load
for fast fracture but above a threshold load.

To study delayed fracture of polymer gels, Wang and Hong [19]
developed a nonlinear visco-poroelastic model with a pre-existing
crack, and they found that the delay time depends on the size of a
pre-existing crack in a similar way as diffusion-limited processes
(a poroelastic effect). By assuming a specific size distribution of
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fracture unless the crack speed is so high that the characteristic dif-
fusion length scale is much smaller than the specimen size
(small-scale diffusion). Both of these studies assumed plane
strain conditions. However, thin specimens are commonly used
in experiments, which can be modeled more accurately with
plane stress conditions. The differences between the plain stress
and plane strain conditions were examined in a recent work [27],
where a nonlinear poroelastic cohesive zone model was proposed
to further study the poroelastic effects on the rate-dependent frac-
ture of polymer gels.

Based on the previous studies [20,24,26,27], we present in this
paper the primary results concerning the poroelastic effects on the
time- and rate-dependent fracture of polymer gels, including both
delayed fracture and steady-state crack growth. In particular, the
modified J-integral method is emphasized (Sec. 2) as an effective
approach for calculating the crack-tip energy release rate as the
energetic driving force for fracture in poroelastic gels, with which
Griffith-like fracture criteria are proposed for delayed fracture with
a stationary crack and for steady-state crack growth. While the
method is generally applicable for linear and nonlinear poroelasti-
city, analytical and numerical results are presented here based on
linear poroelasticity only, first for time-dependent (delayed) fracture
in Sec. 3 and for rate-dependent, steady-state crack growth in Sec. 4.
In the closing remarks (Sec. 5), we summarize the main findings to
date and point out a few areas of potential interests for future
studies.

2 J-Integral and Energy Release Rate

The classical J-integral [28] calculates the energy release within
the contour as the crack grows straight ahead in the local crack-tip
coordinates. If the material is purely elastic, the J-integral is
path-independent and the energy release rate (per unit area of
crack growth) provides a thermodynamic driving force for crack
growth. However, if the material is inelastic and dissipates energy
during deformation such as in metals (plasticity) and polymers
(viscoelasticity), the energy release rate from the classical J-integral
would also include the energy dissipated around the crack tip and
within the contour, and consequently, it is no longer path-
independent in general. In this case, the energetic driving force
for crack growth may be determined by subtracting the energy dis-
sipation (if possible) within the contour from the classical J-integral.
Alternatively, if a cohesive zone is assumed at the crack tip, the
J-integral with a contour around the cohesive zone without enclos-
ing any other dissipative material can also be used to determine the
driving force for crack growth [19,23]. In the case of polymer gels,
energy dissipation may result from viscoelasticity [11,12], poroelas-
ticity (solvent diffusion) [19,20,24-27], and background damage
(due to network imperfection) [29], all of which may dissipate
energy over a large volume around the crack, similar to ductile frac-
ture in metals with large-scale yielding and energy dissipation by
plasticity [30,31].

Despite extensive works on the fracture of viscoelastic materials
in the 1970-1980s [32-37], the energetics of fracture with visco-
elastic energy dissipation remains elusive, whereas the cohesive
zone approach is commonly adopted. The mechanism of back-
ground damage due to network imperfection was recently pro-
posed for polyacrylamide hydrogels [29], for which a detailed
constitutive model with damage is not yet available for the calcu-
lation of energy dissipation. On the other hand, based on a nonlin-
ear poroelastic theory of polymer gels with coupled elastic
deformation and solvent diffusion, a modified J-integral was
derived by Bouklas et al. [20] to calculate the energy release rate
for crack growth in poroelastic gels, where the energy dissipation
by solvent diffusion was subtracted from the classical contour
integral. It was shown that the modified J-integral is path-indepen-
dent for both transient and steady-state crack growth in poroelastic
gels [24-27] without considering other energy dissipation
mechanisms.
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The modified J-integral for poroelastic gels can be written in two
equivalent forms [20]:

* axa oC
J =j (UNl—saJNJ—)dF—j HedA )
I X, 4, OXi
or
" A Oxg ou
J = UN)| —sqyNj—|dTU'+ | C—dA 2
jm( 1= SasNy 6X1) LO X, 2)

where U=U(F, C) is the free energy density function in terms of
the deformation gradient F and the solvent concentration C, and
U = U — uC is Legendre transform of the free energy density func-
tion that yields a function of the deformation gradient F and the
chemical potential of the solvent . Here, the contour [y is drawn
in a homogeneous reference configuration with N; being the
outward unit normal vector, and Ay being the enclosed area (see
Fig. 1); s, is the first Piola-Kirchhoff stress, x,, is the location coor-
dinate of the material point in the current (deformed) configuration,
and Xj is the location coordinate in the reference configuration; the
crack is assumed to lie in the X; — X5 plane with a crack front per-
pendicular to the X; — X, plane in the reference configuration.

The second form of the modified J-integral in Eq. (2) is preferable
for numerical calculations by the finite element method [20],
because it does not require the calculation of the derivatives of
the solvent concentration, which would require higher-order inter-
polations of the concentration field [38]. A domain integral
method was developed along with a nonlinear transient finite
element method to calculate the modified J-integral [20]. We note
that similar forms of modified J-integrals were developed previ-
ously for the hygro-thermo-elastic fracture [39,40] and for the frac-
ture of battery electrodes with solute diffusion [41].

The nonlinear poroelastic theory for large deformation and
solvent diffusion in polymer gels can be linearized for infinitesimal
deformation near a homogeneously swollen state to yield a linear
poroelastic formulation [42], taking the same form as Biot’s
theory of linear poroelasticity [43]. With the linear poroelastic for-
mulation, the modified J-integral is also linearized to yield [26]:

« - Ou; 0
I = j <¢n1 - a,—,—n,——”)dr + J Cc-c)Lar (3
To axl Ao 6x1
where the linearized free energy density function is

43 = G[sije,-j +

T e =) @)

Fig. 1 A crack in a reference configuration with a contour
around the crack tip for J-integral
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Here, oy is the Cauchy stress, ¢;; is the linear strain, u; is the dis-
placement, c is the solvent concentration, G is the shear modulus,
and v is the Poisson’s ratio (drained), all defined with respect to a
homogeneous initial state of the gel with an initial solvent concen-
tration c¢( and correspondingly, an initial chemical potential of the
solvent ug; the contour I'y is drawn in the initial configuration as
well. While the nonlinear form of the modified J-integral in Eq.
(1) or (2) gives the energy release rate per unit area in the reference
configuration (typically, the un-swollen dry state), the linear form in
Eq. (3) is set up in the initial swollen state and thus gives the energy
release rate per unit area in this initial state; the two differ by a factor
of /13, with 4y being the linear swelling ratio of the gel relative to the
dry state of the polymer network.

With the modified J-integral as the crack-tip energy release rate, a
Griffith-like fracture criterion may be proposed for a stationary
crack and for steady-state crack growth in poroelastic gels. In the
case of a stationary crack, the modified J-integral is time-dependent
[20,24] and the onset of crack growth may be predicted when the
modified J-integral reaches a critical value, namely

J(t)=T ®

where I is the fracture energy for initiation of crack growth and
may depend on the polymer network structure as well as the
solvent content of the gel. For steady-state crack growth, the mod-
ified J-integral is rate-dependent (a function of crack speed @) [25—
27], which must be equal to the rate-dependent fracture energy at
the same crack speed, namely,

J(a)=Tss(@) (©6)

where ['sg(a) is the steady-state fracture energy and may depend on
the fracture processes at the crack tip. The specific fracture pro-
cesses may be time- and rate-dependent in general. Following the
spirit of small-scale yielding, we assume a small-scale fracture
process zone so that the detailed fracture processes are not explicitly
considered, but the rate-dependent fracture energy may still be
determined by calculating the modified J-integral on the left-hand
side of Eq. (6) along with the measurement of the crack speed.

The modified J-integral on the left-hand side of Egs. (5) and (6)
differs from the classical J-integral in that the energy dissipation by
solvent diffusion within the contour has been subtracted because
this dissipated energy cannot be released upon crack growth,
namely

J=J-Uy o)

where J is the classical J-integral and J, is the energy dissipation
rate within the contour. For poroelastic gels, both J and J, are path-
dependent, but J* is path-independent [20]. By the second law of
thermodynamics, J; >0 in all cases. With a remote contour along
the boundary of a fracture specimen, the classical J-integral required
to initiate the growth of a stationary crack is then

Je=Tw+J4 3

which is greater than the intrinsic fracture energy I . Similarly, for
steady-state crack growth, the classical J-integral with a remote
contour is

Js (a) = er(a) + Jd(a) (9)

which is greater than the intrinsic steady-state fracture energy
[is(a). Therefore, the apparent fracture energy by the classical
J-integral is generally greater than the intrinsic fracture energy,
and the difference is due to the energy dissipation associated with
solvent diffusion in the gel, namely, poroelastic toughening [25].
Furthermore, it is noted that the amount of poroelastic toughening
may depend on the specimen size and geometry unless solvent dif-
fusion is confined within a small region (compared to the specimen
size) around the crack tip.

Journal of Applied Mechanics

3 Time-Dependent (Delayed) Fracture

A stationary center-crack model was studied in detail previously
[20,24], which is summarized here as an example. Consider a speci-
men with a stationary center crack (Fig. 2), subject to uniaxial
tension by either displacement or load (traction) controlled step
loading under plane strain conditions. The initial state of the gel
is assumed to be stress free and homogeneously swollen, with a
solvent concentration ¢, corresponding to the chemical potential
#o=0. The specimen may be immersed in an external solution
so that all of the boundaries (including the crack faces) are
in contact with the external solution where the chemical potential
u=0 is assumed. Alternatively, if the specimen is not immersed,
we assume that all of the boundaries are impermeable to solvent dif-
fusion. For simplicity, only the results from the linear poroelastic
analysis [24] are discussed here, whereas the nonlinear results
[20] are qualitatively similar.

Instantaneously upon a step loading (t=07), if the poroelastic
material behaves like an incompressible, linearly elastic material
with v=0.5 (undrained), the energy release rate would be

2
_ Ko

h=216

(10)
where K is the instantaneous stress intensity factor. For an infi-
nitely large specimen (h/a — o), Kjo = 4Gej,o/ma under displace-
ment control with ¢, being the applied remote strain, or
Ko = 6;4/ma under load control with o}, being the applied remote
stress, where a is the half crack length and # is the half-width of
the specimen.

The instantaneous elastic deformation around the crack tip leads
to an inhomogeneous field of the chemical potential, which drives
solvent diffusion in the poroelastic specimen. Even at infinitesimal
time increments (r— 0%), there exists a diffusion zone around
the crack tip, which may influence the stress intensity factor and
the energy release rate [24]. By dimensional considerations, the
energy release rate can be written as

J—=A<5, ﬁ,u) (a1
a

J() T

where 7= a?/D" is the characteristic diffusion time with an effec-
tive diffusivity D", vis Poisson’s ratio (drained), and the dimension-
less function on the right-hand side is to be determined numerically
and depends on the chemo-mechanical conditions (displacement or
load control, immersed or not immersed) [24]. For linearly

' Ep OFr Op,

2h

l Ep OF Op,

Fig. 2 Schematic of a stationary center-crack model
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Table 1 Short-time and long-time limits of the crack-tip energy release rate for the linearly poroelastic center-crack model

Short-time limit Long-time limit

Immersed Displacement control

Load control

Not-immersed Displacement control

Load control

X T
Tt — c0)=-0—

2(1 —v)
J(t = 00)=2(1 —v)Jy

J'(t = o0) =1.496Jy*
J(t = 00)=2(1 —v)Jy

1 0.47
J*(t - 0+) =Jo [m]

J@t— 0" =J

“Based on numerical results for h/a=10 and v =0.24 [24].

poroelastic materials, analytical limits for the energy release rate can
be found at the short-time and long-time limits as listed in Table 1.

3.1 Short-Time Limits. At the short-time limit (0<#/7< 1),
the stress intensity factor is found to be [21,24]

1 a
K[(l‘ — 0+)=K[()|:mj| (12)

where a~0.735 for the immersed case and a=0.5 for the
not-immersed case. Therefore, in both the immersed and
not-immersed cases, K,(t —0") <K as long as v<0.5.
Correspondingly, the energy release rate at the short-time limit is
obtained for the immersed and not-immersed cases as [24]

2a-1
Tt — 0%) =Jo[m] (13)

Thus, for the immersed case (@~ 0.735), J*(t — 0%) < Jy; and
for the not-immersed case (@ =0.5), J*(t — 0%) = J;.

3.2 Long-Time Limits. At the long-time limit (f - o), the
chemical potential becomes homogenous so that the specimen
reaches both chemical and mechanical equilibrium (assuming no
crack growth) and the linear poroelasticity problem becomes iden-
tical to a linear elasticity problem. For the immersed case, the stress
intensity factor at the long-time limit is exactly the same as the
elastic case with the (drained) Poisson’s ratio (v). Under displace-
ment control, we obtain [24]

Kio
Kt — =— 14
11—~ o) =50 (14)
which is smaller than the short-time limit given by Eq. (12) with v <
0.5. Under load control, the elastic stress intensity factor is indepen-
dent of Poisson’s ratio. As a result, the stress intensity factor at the
long-time limit is simply:

Kt — 00)=Kp 1s)

which is greater than the short-time limit in Eq. (12) for the
immersed case [24].

Correspondingly, the energy release rate at the long-time limit for
the immersed case is [24]

Jo

J( =——— 16
(= ) =557 (16)

under displacement control and
J(t — c0)=2(1 — )y (7

under load control. Therefore, the energy release rate as a function
of time depends on the loading conditions, with different long-time
limits for displacement and load control.

For the not-immersed case, under load control, the long-time
limit of the stress intensity factor is the same as Eq. (15). Under

031005-4 / Vol. 87, MARCH 2020

displacement control, the long-time limit is also the same if h/a>
1, but slightly different for a finite specimen [24]: K/t — oc0)=
0.993K), for hla=10 and v=0.24." Similarly, the energy release
rate at the long-time limit for A/a>>1 is the same as Eq. (17) for
the not-immersed cases, but slightly different for a finite specimen
under displacement control: J*(t — oo0) = 1.496J for h/a=10 and
v=0.24.

3.3 Numerical Results. Based on the linear poroelastic for-
mulation, a finite element method was developed to solve the
associated initial/boundary value problems [24]. By the modified
J-integral, we calculated the crack-tip energy release rate (J°) in
the linearly poroelastic center-crack model (Fig. 2), which con-
firmed the predictions for the short-time and long-time limits
in Table 1. Figure 3(a) shows the normalized energy release
rate as a function of the normalized time for both the immersed
and not-immersed specimens under displacement-controlled step
loading. For the not-immersed case, the normalized energy
release rate increases monotonically over time, from the short-time
limit to the long-time limit. For the immersed case, however, the
normalized energy release rate first increases and then decreases,
approaching a long-time limit that is smaller than the short-time
limit. The non-monotonic evolution is a result of solvent diffusion
from both the crack faces and the outer boundaries of the specimen
as discussed in Ref. [20]. Figure 3(b) shows the normalized energy
release rates under load control. For the not-immersed case, the
behavior is similar to that under displacement control in Fig. 3(a),
except for a slightly different long-time limit due to a finite
specimen size (h/a=10). On the other hand, the behavior for the
immersed case is different from that in Fig. 3(a). While the
short-time limit is the same for both displacement and load
control, the long-time limits are different for the immersed case.
In contrast to the non-monotonic variation under displacement
control (Fig. 3(a)), the energy release rate increases monotonically
under load control, approaching the same long-time limit as for the
not-immersed case. Thus, under different loading conditions, the
fracture behavior could be different for the immersed specimens.

3.4 Delayed Fracture. By the fracture criterion in Eq. (5), a
stationary crack in a poroelastic gel would start growing once the
time-dependent energy release rate (J*) reaches a critical value
(T'.p). Depending on the applied load (either displacement or load
control) as well as the chemical boundary condition (immersed or
not-immersed), the crack may grow immediately or after a time
delay or may not grow at all. According to the numerical results
in Fig. 3, except for the immersed case under displacement-
controlled loading, the energy release rate (J*) increases monoton-
ically over time. In these cases, the crack would grow immediately
if the short-time limit of the energy release rate is greater than the

'In the present work, v is the drained Poisson’s ratio in linear poroelasticity as
defined in Ref. [42] unless noted otherwise. The undrained Poisson’s ratio is taken
to be 0.5 assuming incompressibility for both the polymer and the solvent. The differ-
ence between the drained and undrained Poisson’s ratios depends on the initial solvent
concentration in the gel. The value v=0.24 is used in numerical simulations for a
typical polymer gel with an initial solvent concentration Qco=0.97 (equivalent to a
solvent volume fraction of 97%).
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not-immersed
—e—immersed

(b)

Fig. 3 Normalized energy release rate (J*/Jo) versus the normalized time (t/7) for the immersed
and not-immersed center-crack models with h/a=10 and v=0.24. (a) under displacement
control and (b) under load control. The horizontal dashed and dotted lines are the short-time

and long-time limits, respectively.

fracture toughness, i.e., J *(t = 0%) > I, but would never grow if
the long-time limit is lower than the fracture toughness, i.e.,
J'(t = o0) <T; in between, delayed crack growth is predicted
if J°(t — 07)<T<J(t - c0). Taking J, as the applied
loading parameter (corresponding to the classical J-integral with a
remote contour), the delay time may be predicted by Eq. (5)
as shown in Fig. 4. For the center-crack model with A/a =10 and
v=0.24, the crack would never grow if J;<0.66I"; (a threshold
for delayed fracture), immersed or not. For the not-immersed
case, the crack grows immediately if J,> Iy, whereas delayed frac-
ture would occur if 0.66I.g<Jy<I'.o (subcritical), with the delay
time decreasing as the applied load (J) increases. For the immersed
case, the crack grows immediately only if Jy>1.22T", (supercriti-
cal), with 22% toughening due to the poroelastic effect. Hence,
the gel would appear to be tougher when immersed. Furthermore,
under the same normalized loading when 0.66I .o<Jo<I o,
Fig. 4 predicts that the delay time would be longer for the immersed
case than not-immersed.

Experimentally, delayed fracture has been observed in polymer
gels [15-17] as well as many other materials [32,44-48]. For
polymer gels, the delayed fracture may result from thermally acti-
vated crack nucleation [15], stress-enhanced bond rupture and dis-
sociation [16], viscoelasticity (creep), and poroelasticity (solvent
diffusion) [19-24]. Recently, Tang et al. [17] observed delayed
fracture of polyacrylamide hydrogels when the applied energy
release rate (Jy) was below the critical load for fast fracture and
above a threshold value, while the delay time increased as the

10°
1 immersed
10 !
\ not-immersed
1
1
& 107 !
-~ I
1
1073 :
:
1
10° :
_—
0.5 0.75 1 1.25
Jo T

Fig. 4 Normalized delay time (t,/7) for the onset of crack growth
for the linearly poroelastic center-crack model under load control

Journal of Applied Mechanics

applied energy release rate decreased. This observation is qualita-
tively consistent with Fig. 4, where the critical energy release rate
for fast fracture is set by the short-time limit and the threshold for
delayed fracture is set by the long-time limit. In between, the
delay time for the onset of crack growth decreases sharply with
increasing load (Jy) and can be written as

2 (T h
ZbZ%'f<70, > V) (18)

FC() a

where the dimensionless function f(...) depends on the normalized
load (Jo/T'.p) as well as the specimen geometry and the chemo-
mechanical boundary conditions.

4 Rate-Dependent Fracture: Steady-State Crack
Growth

For steady-state crack growth in polymer gels, an infinitely long-
strip specimen with a semi-infinite crack was considered, first under
plane strain conditions [26] and then under plane stress conditions
[27]; both were based on the linear poroelastic formulation for
polymer gels. Theoretically, there are subtle differences between
the plane stress and plane strain conditions, such as the effective dif-
fusivity and the asymptotic crack-tip fields for the solvent concen-
tration and chemical potential [27]. Experimentally, thin-sheet
specimens are commonly used such as the pure shear tests, which
are close to the plane stress conditions. As shown in Fig. 5, the
strip width is 24, with a semi-infinite crack lying in the mid-plane.
Subjected to an opening displacement + A applied to the upper and
lower edges of the strip, the crack grows and reaches a steady-state
with a constant crack speed a. Similar specimens have been used in
experiments for various materials including rubber [49] and gels
[11,18].

With respect to the moving coordinate (for an observer traveling
with the crack tip), the mechanical equilibrium equation remains

Fig. 5 Schematic of a long-strip specimen with steady-state
crack growth in the x; direction
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unchanged, while the equation for solvent diffusion becomes time-
independent but instead depends on the steady-state crack speed (&).
The steady-state crack model (Fig. 5) has two relevant length scales:
the specimen half-width 4 and the steady-state diffusion length [, =
D*/a [26,27]. The ratio between the two length scales defines a
dimensionless number

Pe=—=— 19)

which is called the Péclet number for advection-diffusion problems
[50]. Note that the Péclet number is slightly different under plane
stress and plane strain conditions due to the difference in the effec-
tive diffusivity [27].

If the specimen is made of a material that is linearly elastic and
incompressible, the energy release rate for steady-state crack
growth in the pure shear test is simply:

J, =4Ge>h (20)

where £, = A/h. For a linearly poroelastic long-strip specimen, the
normalized energy release rate " /J.) for the steady-state crack
growth depends on two dimensionless parameters: the Péclet
number (Pe = h/l,) and the (drained) Poisson’s ratio (v), namely

= AutPe.v) @1
Je

A stabilized finite element method was developed for the
steady-state crack growth model [26,27]. A subtle difference
between the plane strain and plane stress is the boundary condition
along the upper and lower edges (x, = =+ h) of the specimen: while a
constant displacement u, = + he,, is applied for both cases, the dis-
placement u; =0 is assumed in the plane stress model [27], but the
traction 0,1 =0 is assumed in the plane strain model [26] so that a
uniform stretch in the x, direction far ahead of the crack tip is pos-
sible with the incompressible deformation under the plane strain
conditions.

4.1 Slow Crack Limit (Pe <<1). For the slow crack limit, the
solvent diffusion is primarily one-dimensional (1D) in the x; direc-
tion ahead of the crack tip (x; >0), which can be modeled approx-
imately by a 1D model for both plane stress and plane strain
conditions [26,27]. It was found that, at the slow crack limit, both
the chemical potential and opening stress ahead of the crack tip
(for x;>h) vary exponentially with a characteristic diffusion
length scale I;;> h. Correspondingly, the energy release rate can
be calculated by the modified J-integral for the slow crack limit as

* J(?
J(Pe<<1)=2(]_y) 22)

which is the same for both immersed and not-immersed cases
[26,27].

4.2 Fast Crack Limit (Pe > 1). At the fast crack limit, [, <<h
so that solvent diffusion is largely confined to a small region around
the crack tip (small-scale diffusion). In this case, a crack-tip model
may be constructed [25-27], where the asymptotic elastic crack-tip
solution can be imposed as the remote boundary condition. We note
that such a crack-tip model is strictly possible for the immersed case
only, when there exists an elastic crack-tip solution [26]. Neverthe-
less, the numerical results suggested that the energy release rate
approaches the same fast crack limit for both the immersed and
not-immersed cases [26,27]. On the other hand, different fast
crack limits were obtained under plane stress and plane strain con-
ditions. As listed in Table 2, the energy release rate for the fast crack
limit under the plane strain conditions is identical to the slow crack
limit in Eq. (22), whereas the fast crack limit under the plane stress
conditions is higher (for 0 <v<0.5) [27]:

J'(Pe>1) =§(1 +u)J, (23)

031005-6 / Vol. 87, MARCH 2020

Table 2 Slow-crack and fast-crack limits of the energy release
rate for steady-state crack growth in linearly poroelastic
specimens

Slow-crack limit Fast-crack limit

Je
2(1-v)
J'Pex> =31 +uv)l,

J'Pe<xlorPe>1)=
J'(Pex1)=

Plane strain
Je

Plane stress )

Both limits in Egs. (22) and (23) become the same as the elastic
value in Eq. (20) when v =0.5, which implies no solvent diffusion
and hence the material is purely elastic (and incompressible). When
0<v<0.5,J" < J, at both limits due to poroelastic effects. In other
words, the energy release rate at the crack tip is smaller than the
classical J-integral applied at the remote boundary because part of
the supplied energy has been dissipated by solvent diffusion in
the poroelastic specimen. The poroelastic effect thus solely
depends on the (drained) Poisson’s ratio at the two limits. For
polymer gels, the (drained) Poisson’s ratio depends on the initial
solvent concentration and the solvent-polymer interaction [42].

4.3 Numerical Results. Figure 6 shows the numerical results
for the normalized energy release rate as a function of the normal-
ized crack speed (Pe) for both the immersed and not-immersed
cases. Under the plane strain conditions (Fig. 6(a)), the normalized
energy release rate depends on the normalized crack speed non-
monotonically, with a peak at Pe ~ 10 for the immersed case and
at Pe ~ 3 for the not-immersed case. While the slow crack and fast
crack limits are the same for both the immersed and not-immersed
cases, the peak is higher for the immersed case. In contrast, under
the plane stress conditions (Fig. 6(b)), the normalized energy
release rate depends on the normalized crack speed monotonically,
except for a shallow peak at Pe ~ 100 for the immersed case.” In
particular, the normalized energy release rate is considerably
higher under the plane stress condition at the fast crack limit, indi-
cating lower energy dissipation by solvent diffusion. This differ-
ence between plane strain and plane stress conditions may be
understood as a result of different hydrostatic stress components
that relate directly to the chemical potential and hence the solvent
diffusion. The hydrostatic stress is higher under the plane strain
conditions, thus leading to higher energy dissipation by solvent dif-
fusion. This is opposite to the effect of plasticity, where energy dis-
sipation is associated with the deviatoric (shear) stress and thus is
relatively lower under the plane strain conditions [51].

4.4 Rate-Dependent Fracture. By the fracture criterion in Eq.
(6), when the crack grows in a steady-state, the crack-tip energy
release rate (J*) must be equal to the intrinsic steady-state fracture
toughness (I's,) of the gel. Thus, the fracture toughness as a function
of crack speed can be determined by measuring the steady-state
crack speed (@) in a long-strip specimen as a function of the
applied strain (¢, = A/h), namely

[y(@)=J =4GeX h - Ay (%h 1/) (24)

where the dimensionless function Ag (%, L/) can be calculated as
shown in Fig. 6 for either plane stress or plane strain conditions.
The poroelastic properties (G, v, and D*) of the gel must be deter-
mined separately by independent measurements. On the other
hand, the classical J-integral (J, =4G8§0h) is often taken as the

2Under plane stress conditions, the surfaces of the thin specimen are assumed to be
impermeable to solvent diffusion for both the immersed and non-immersed cases so
that no solvent diffusion occurs in the out-of-plane direction. Otherwise, in the
immersed case, the chemical potential would be nearly a constant in equilibrium
with the external solution and the problem become purely elastic (rate-independent).

Transactions of the ASME

I1¥268v9/5001L£0/€/.8/4Pd-joiE/SOIUBLOBWPal|dde/B10"BLUSE" UO08]|00|E)BIPaWSE//:SANY WOl Papeojumod

€ /8 wel

6102 J9qUIBAON (Z UO Josn unsny 1y sexa | Jo Aisiaaiun Aq Jpd'Go0L€0



0.74 : : . 0.9

0.72¢ immersed

JNJ
JN

0.681

0.66

not-immersed

0.64 ‘ : : 0.6 : : :
1072 10° 102 10* 1072 10° 102 10*
Pe Pe

(a) (b)

Fig.6 Normalized energy release rate (J*/J.) versus the normalized crack speed (Pe = ah/D") for
steady-state crack growth in linearly poroelastic specimens (v = 0.24): (a) under plane strain con-
ditions and (b) under plane stress conditions. The dotted and dashed lines are the slow and fast

crack limits, respectively.

apparent fracture toughness [11,18], which is generally greater than
the intrinsic fracture toughness (J*/J, < 1). Moreover, Eq. (24)
implies that the apparent toughness J, would depend on the speci-
men size through the Péclet number (Pe=ah/D") whereas the
intrinsic toughness I'y; should be independent of the specimen size.

If the rate-dependent fracture toughness I'ys(a) is known for the
gel, Eq. (24) may be used to predict the steady-state crack speed
in a long-strip specimen subject to an applied strain &,. In parti-
cular, if 'y, is independent of the crack speed, there exist two critical

strains under the plane strain conditions: &, = ﬁ and
v max

En = F“Q(é;”), where A, is the peak value of the function

Ass(Pe, v) as shown in Fig. 6(a) for a given Poisson’s ratio. If the
applied strain is smaller than the first critical strain (&£, <&.1), the
energy release rate is less than the intrinsic toughness (J* < I'y)
for all crack speeds and thus the crack would not be able to grow
at all. Thus, the first critical strain (&.;) is the threshold strain for
steady-state crack growth in the gel. On the other hand, if the
applied strain is greater than the second critical strain (£4> &),
the energy release rate is greater than the intrinsic toughness
(J*>Ty) for all crack speeds and thus no steady-state crack
growth is possible without considering inertial effects. Between
the two critical strains (&, <&y, <€), quasi-static steady-state
crack growth is possible. Interestingly, the numerical results in
Fig. 6(a) predict two possible crack speeds under the plane strain
conditions, but only one is stable. Considering the change of the
energy release rate with a slight perturbation to the crack speed,
stable steady-state crack growth is predicted when dA/dPe <0.
Therefore, based on Fig. 6(a), we plot in Fig. 7 the Péclet number
for the stable crack speed versus J /Ty as the normalized loading
parameter. Notably, such a plot resembles the V-G curve for envi-
ronmentally assisted subcritical crack growth in many brittle solids
[52], with a threshold energy release rate for slow crack growth and
a critical energy release rate for fast fracture.

Experimentally, Baumberger et al. [18] reported measurements
of steady-state crack growth in gelatin gels. They found that the
applied energy release rate (J,) increased with increasing crack
velocity, so-called “velocity toughening,” which appears to be con-
sistent with Fig. 7. In addition, they reported that increasing solvent
viscosity slowed down the crack growth. By the theory of linear
poroelasticity, the solvent viscosity can be related to the effective
diffusivity as [42]

 2(1 =
p =21 -Gk 25)
1-2v g

Journal of Applied Mechanics
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& 102+

not-immersed
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Fig. 7 Normalized steady-state crack speed (Pe = ah/D*) as a
function of the normalized loading parameter (J./T'ss) for a poroe-
lastic long-strip specimen under plane strain conditions

where 7 is the solvent viscosity and « is permeability of the polymer
network. Thus, increasing the solvent viscosity would decrease the
effective diffusivity, which in turn would decrease the crack speed
to maintain the same Péclet number (Pe = ah/D"). Furthermore, it
was found that soaking the crack tip with the solvent increased
the crack velocity. When the applied energy release rate (J,) was
too low for the “dry” crack to grow, the “soaked” crack would
still grow. The “soaking” effect may be qualitatively understood
by comparing the immersed and not-immersed cases in Fig. 7.
Under the same applied load (J./T;), the Péclet number for the
immersed case (“soaked”) is larger than the not-immersed case
(“dry”) and hence the “soaked” crack grows faster. Moreover,
since the threshold load (&.; or J,; =1y /Apna) for the immersed
case is lower than the not-immersed case (assuming same [;),
the “soaked” crack can grow at a lower J, than the “dry” crack.
Therefore, despite the limitations of linear poroelasticity, the
numerical results in Fig. 7 are qualitatively consistent with the
experiments. Quantitatively, however, the “velocity toughening”
observed in the experiments was much more significant than that
shown in Fig. 7. Nonlinear poroelasticity and possibly rate-
dependent fracture processes should be considered for a more quan-
titative understanding of the rate-dependent fracture in gels.
Under the plane stress conditions, the numerical results in
Fig. 6(b) suggest that the crack growth is unstable in the
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not-immersed case unless the intrinsic fracture toughness I’y
increases with increasing crack speed. In the immersed case, the
normalized energy release rate (J*/T) decreases slightly with
increasing crack speed for fast crack growth (Pe>100), which
again is insufficient to account for the “velocity toughening” as
observed in experiments [13,18]. To partly account for the rate-
dependent fracture processes in gels, a poroelastic cohesive zone
model was proposed [25,27], considering both deformation and
solvent diffusion in the cohesive zone as follows.

5 A Poroelastic Cohesive Zone Model

For the immersed case, a cohesive zone ahead of the crack tip
(Fig. 8) is assumed to be permeable to solvent diffusion, where
the free energy density (per unit area) is a function of the opening
displacement (6) and the chemical potential (1) of the solvent
[27], namely

1
b6, ) =5 k5" = £5 (26)

with a constant stiffness k and the solvent molecular volume Q. The
opening stress (0,,) and the solvent concentration (§, per unit area)
in the cohesive zone can then be obtained as

o).
- g;‘zké—g @7
op, &
= — C=_ 2
(=-%r=5 28)

Equation (27) indicates that the traction-separation relation of the
cohesive zone depends on the solvent chemical potential, similar to
the pore pressure in linear poroelasticity. By Eq. (28), the opening
space in the cohesive zone must be filled up by solvent molecules.

The solvent flux in the cohesive zone is assumed to follow a
linear kinetic law [25,27]:

o

J1=—My o (29)
X1
where the mobility constant M, is taken to be the same as that in
the gel.
Mass conservation in the cohesive zone requires that [27]
o¢ o
e (i®)+(iF=i)=0 30
a axl(h )+ (2 —72) (30)

where j3 and j; are the solvent flux rates across the upper and lower
interfaces of the cohesive zone at x, =0" and x, =07, respectively.
The second term in Eq. (30) is nonlinear in general, which was lin-
earized in Ref. [25] by assuming a constant o.

Fig. 8 Schematic of a cohesive zone model with a crack-tip
opening displacement J;

031005-8 / Vol. 87, MARCH 2020

With the poroelastic cohesive zone model, additional energy dis-
sipation occurs due to solvent diffusion within the cohesive zone.
The modified J-integral in Eq. (3) is path-independent only if the
entire cohesive zone is enclosed within the contour. Otherwise,
for an arbitrary contour, additional terms must be included in the
J-integral to account for the energy dissipation within the cohesive
zone [27]. By taking an infinitesimal circular contour around the

crack tip, we obtain
J'=(zk* -6

For the immersed case, with =0 and 6 = 6 at the crack tip (x; =
0), we obtain J* =1k57. Here, 6 is the crack-tip opening displace-
ment (CTOD) and, for the case of steady-state crack growth, it is
also the critical separation for fracture.

For the not-immersed case, we assume that the cohesive zone is
impermeable to solvent diffusion so that the free energy density
function (per unit area) is simply ¢, = %kéz, and the opening
stress is 65, = k4. In this case, we obtain [27]

€1V

x1=0

.1

=3

ko; (32)

Note that, while Eq. (32) is the same for both the immersed and
not-immersed cases, solvent diffusion in the cohesive zone for the
immersed case dissipates energy and thus enhances poroelastic
toughening, but the cohesive zone for the not-immersed case is
simply elastic with no solvent diffusion.

By dimensional considerations, the normalized energy release
rate J*/J, for the steady-state crack model (Fig. 5), now with a
cohesive zone, depends on four dimensionless parameters, namely

J I
—=Ag( Pe, e, —,
7. ( e, € A 1/) (33)

where .= G/k is a length scale associated with the cohesive zone.
When [ ./h — 0 (no cohesive zone), Eq. (33) reduces to Eq. (21), fol-
lowing the linear poroelastic results. With the cohesive zone, the
problem becomes weakly nonlinear as a result of solvent diffusion
governed by Eq. (30) for the immersed case.

With the poroelastic cohesive zone model, the stabilized finite
element method was modified to account for the traction-separation
and solvent diffusion in the cohesive zone [27]. The crack-tip
energy release rate can be calculated directly by Eq. (32) for both
the immersed and not-immersed cases, where the CTOD (6p)
depends on the applied strain (&) nonlinearly for the immersed
case but linearly for the not-immersed case. Figure 9 shows the
numerical results for the normalized energy release rate as a func-
tion of the Péclet number under the plane stress conditions. Com-
pared with Fig. 6(b), the presence of a small-scale cohesive zone
(I/h=1077) has no effect on the energy release rate for relatively
slow crack growth with Pe < 100. In this case, /. <« [, and the cohe-
sive zone is largely enclosed by the diffusion zone. For fast crack
growth (Pe > 100), the diffusion zone size (/,;) becomes comparable
to or even smaller than the cohesive length scale (/.), and the poroe-
lastic effect is influenced by the cohesive zone. For the immersed
case, the normalized energy release rate decreases as the Péclet
number increases. For very fast crack growth (Pe> 10%), the diffu-
sion length is smaller than the cohesive length (I </. < k). In this
case, a crack tip model can be used with the elastic K-field imposed
as the remote boundary condition [27]. It was found that as [/l
increases, the normalized energy release rate decreases and
approaches zero. Apparently, with increasing Péclet number, the
magnitude of the chemical potential and its gradient (du/ox;) in
the cohesive zone increase significantly, leading to enhanced
energy dissipation within the cohesive zone. Meanwhile, the
opening separation in the cohesive zone is proportional to the
solvent concentration and thus kinetically constrained by solvent
diffusion.
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Fig. 9 Normalized energy release rates versus the Péclet
number under the plane stress conditions with the nonlinear
cohesive zone model (e, =103, I/h=10"5%, and v=0.24). The
dotted and dashed lines are the slow and fast crack limits
without the cohesive zone, respectively.

For the not-immersed case, with no solvent diffusion in the cohe-
sive zone, the numerical results show the opposite trend for the nor-
malized energy release rate (Fig. 9). Evidently, as the Péclet number
increases, the effect of poroelastic toughening decreases in the
not-immersed case. Here, solvent diffusion is restricted to a small
region near the crack tip, where the presence of a cohesive zone
reduces the stress and solvent concentration, leading to reduced
energy dissipation by solvent diffusion. In the limiting case of
very fast crack growth with Pe > 1 or [, </, the energy dissipation
by solvent diffusion vanishes and the crack-tip energy release rate
approaches the elastic limit (J*/J, — 1) [27].

With the cohesive zone model, additional measurements are
needed to determine the steady-state fracture toughness. For
example, the CTOD may be measured as a function of the crack
speed, 67(a). By dimensional considerations, we have

Op(a) = 2hey, - g(Pe, Eoo» %, u) (34)
where g(Pe, €05 % v) is a dimensionless function and can be cal-
culated [27]. Under a given applied strain and crack speed, the
crack-tip opening increases with increasing cohesive length (I./h)
so that the cohesive length and the stiffness k can be determined
from the measured CTOD. Then, by Eq. (32), the steady-state frac-
ture toughness can be obtained as I'y(a) = %k(ﬁf.

With the cohesive zone model, the numerical results in Fig. 9
suggest that the crack growth remains unstable for the not-immersed
case unless the steady-state fracture toughness (I'y,) increases with
increasing crack speed. For the immersed case, significantly
enhanced poroelastic toughening is predicted for relatively fast
crack growth (Pe>100). Assuming a constant [y, (e.g., ['ys=
107*Gh), the applied strain required for the steady-state crack
growth at each speed can be determined by setting J* =TIy, in Eq.
(33). Figure 10(a) shows the applied energy release rate
.= 4Gs§oh) thus obtained as a function of the normalized crack
speed [27]. Evidently, the effect of poroelastic toughening increases
with increasing crack speed (“velocity toughening”). With the por-
oelastic cohesive zone, the poroelastic toughening is more signifi-
cant than that shown in Fig. 7 for plane strain conditions without
a cohesive zone. Experimentally, Lefranc and Bouchaud [13]
found that the measured energy release rate increased significantly
with increasing crack speed in agar gels, qualitatively consistent
with Fig. 10(a), although it may also include effects from other rate-
dependent fracture processes at the crack tip.

Further insights were gained by examining the opening displace-
ment, the opening stress, and the chemical potential in the poroe-
lastic cohesive zone at different crack speeds for the immersed
case [27], assuming the same fracture toughness (I'y;= 10_4Gh).
Remarkably, the numerical results suggested a rate-dependent
traction-separation relation as shown in Fig. 10(). For relatively
slow crack growth (Pe=100), the chemical potential in the cohe-
sive zone is small and the traction-separation relation is almost
linear (o, ~kd). As the crack speed increases, the magnitude of
chemical potential increases and adds significantly (as a negative
pore pressure) onto the opening stress following Eq. (27). As a
result, the traction-separation relation becomes nonlinear and
dependent on the crack speed. For very fast crack growth (Pe=
10%), the opening stress reaches a peak ahead of the crack tip
where the chemical potential is the most negative. Correspond-
ingly, the traction-separation relation becomes non-monotonic
with apparent softening after the peak. With the same steady-state
toughness (I'y,= 107*Gh and I[/h=107>), the opening displace-
ment and stress at the crack tip (x; =0) are independent of the
crack speed, but the trajectory of the traction-separation relation
depends on the chemical potential and solvent diffusion within
the cohesive zone. Interestingly, by integrating the traction-
separation relation we would obtain a rate-dependent fracture
energy that includes not only the crack-tip energy release rate
(T'ys =J7) but also the energy dissipation in the poroelastic cohe-
sive zone; while the former is assumed to be independent of
crack speed here, the latter is inherently rate-dependent. We note
that, despite the small-scale bridging condition (I/h=107>), the
effect of the poroelastic cohesive zone could be significant when
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Fig. 10 (a) The applied energy release rate (Je = 4Ge2 h) as a function of the Péclet number for
the immersed case under plane stress conditions, with I';s=10"*Gh, I./h=10"° and v=0.24.
(b) Rate-dependent traction-separation relations by the poroelastic cohesive zone model.
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the diffusion length scale (l/h=1/Pe) is as small as or even
smaller than the cohesive length scale as in the case of fast crack
growth (Pe>1).

6 Closing Remarks

This paper focuses on the effects of poroelasticity on the time-
and rate-dependent fracture of polymer gels. A modified J-integral
is used to calculate the crack-tip energy release rate as the energetic
driving force for crack growth in poroelastic gels, taking into
account the energy dissipation by solvent diffusion. For a stationary
crack, the energy release rate is time-dependent, and delayed frac-
ture can be predicted based on a Griffith-like fracture criterion.
For steady-state crack growth in a long-strip specimen, the energy
release rate is a function of the crack speed, with rate-dependent
poroelastic toughening. With a poroelastic cohesive zone model,
solvent diffusion within the cohesive zone leads to significantly
enhanced poroelastic toughening as the crack speed increases.
While most of the analytical and numerical results are based on
the linear poroelastic formulation, future studies may extend to non-
linear theories coupling solvent diffusion with large deformation,
especially for tough gels [8,9]. In addition to the poroelastic
effects, other mechanisms such as viscoelasticity and local fracture
processes should be studied to further understand the time- and rate-
dependent fracture of polymer gels. Of particular interest is the
phase-field modeling [53,54] that may incorporate various deforma-
tion and fracture mechanisms within a unified theoretical and com-
putational framework.

Funding Data

e National Science Foundation (Grant No. CMMI-1538658;
Funder ID: 10.13039/501100008982).

References

[1] Drury, J. L., and Mooney, D. J., 2003, “Hydrogels for Tissue Engineering:
Scaffold Design Variables and Applications,” Biomaterials, 24(24), pp. 4337—
4351.

[2] Langer, R., 2006, “Biomaterials for Drug Delivery and Tissue Engineering,”
MRS Bull., 31(6), pp. 477-485.

[3] Peppas, N. A., Hilt, J. Z., Khademhosseini, A., and Langer, R., 2006, “Hydrogels
in Biology and Medicine: From Molecular Principles to Bionanotechnology,”
Adv. Mater., 18(11), pp. 1345-1360.

[4] Calvert, P., 2009, “Hydrogels for Soft Machines,” Adv. Mater., 21(7), pp. 743—
756.

[5] Suo, Z., 2012, “Mechanics of Stretchable Electronics and Soft Machines,” MRS
Bull., 37(3), pp. 218-225.

[6] Yuk, H., Lin, S. T., Ma, C., Takaffoli, M., Fang, N. X_, and Zhao, X., 2017,
“Hydraulic Hydrogel Actuators and Robots Optically and Sonically
Camouflaged in Water,” Nat. Commun., 8, p. 14230.

[7] Yang, C., and Suo, Z., 2018, “Hydrogel Ionotronics,” Nat. Rev. Mater., 3,
pp. 125-142.

[8] Gong, J. P., Katsuyama, Y., Kurokawa, T., and Osada, Y., 2003,
“Double-Network Hydrogels With Extremely High Mechanical Strength,” Adv.
Mater., 15(14), pp. 1155-1158.

[9] Sun,J. Y., Zhao, X. H., Illeperuma, W. R. K., Chaudhuri, O., Oh, K. H., Mooney,
D. J., Vlassak, J. J., and Suo, Z., 2012, “Highly Stretchable and Tough
Hydrogels,” Nature, 489(7414), pp. 133-136.

[10] Zhao, X., 2014, “Multi-scale Multi-Mechanism Design of Tough Hydrogels:
Building Dissipation Into Stretchy Networks,” Soft Matter, 10(5), pp. 672-687.

[11] Long, R., and Hui, C. Y., 2016, “Fracture Toughness of Hydrogels: Measurement
and Interpretation,” Soft Matter, 12(39), pp. 8069-8086.

[12] Creton, C., 2017, “50th Anniversary Perspective: Networks and Gels: Soft but
Dynamic and Tough,” Macromolecules, 50(21), pp. 8297-8316.

[13] Lefranc, M., and Bouchaud, E., 2014, “Mode I Fracture of a Biopolymer gel:
Rate-Dependent Dissipation and Large Deformations Disentangled,” Extreme
Mech. Lett., 1, pp. 97-103.

[14] Forte, A. E., D’Amico, F., Charalambides, M. N., Dini, D., and Williams, J. G.,
2015, “Modelling and Experimental Characterisation of the Rate Dependent
Fracture Properties of Gelatine Gels,” Food Hydrocolloid, 46, pp. 180-190.

[15] Bonn, D., Kellay, H., Prochnow, M., Ben-Djemiaa, K., and Meunier, J., 1998,
“Delayed Fracture of an Inhomogeneous Soft Solid,” Science, 280(5361),
pp. 265-267.

[16] Skrzeszewska, P. J., Sprakel, J., de Wolf, F. A., Fokkink, R., Stuart, M. A. C., and
van der Gucht, J., 2010, “Fracture and Self-Healing in a Well-Defined
Self-Assembled Polymer Network,” Macromolecules, 43(7), pp. 3542-3548.

031005-10 / Vol. 87, MARCH 2020

[17] Tang, J., Li, J., Vlassak, J. J., and Suo, Z., 2017, “Fatigue Fracture of Hydrogels,”
Extreme Mech. Lett., 10, pp. 24-31.

[18] Baumberger, T., Caroli, C., and Martina, D., 2006, “Solvent Control of Crack
Dynamics in a Reversible Hydrogel,” Nat Mater, 5(7), pp. 552-555.

[19] Wang, X., and Hong, W., 2012, “Delayed Fracture in Gels,” Soft Matter, 8(31),
pp. 8171-8178.

[20] Bouklas, N., Landis, C. M., and Huang, R., 2015, “Effect of Solvent Diffusion on
Crack-Tip Fields and Driving Force for Fracture of Hydrogels,” ASME J. Appl.
Mech., 82(8), p. 081007.

[21] Atkinson, C., and Craster, R. V., 1991, “Plane Strain Fracture in Poroelastic
Media,” Proc. R. Soc. London, A, 434(1892), pp. 605-633.

[22] Hui, C. Y., Long, R., and Ning, J., 2013, “Stress Relaxation Near the Tip of a
Stationary Mode I Crack in a Poroelastic Solid,” ASME J. Appl. Mech., 80(2),
p. 021014.

[23] Yang, C.-H., and Lin, Y.-Y., 2018, “Time-Dependent Fracture of Mode-I Cracks
in Poroviscoelastic Media,” Eur. J. Mechanics—A/Solids, 69, pp. 78-87.

[24] Yu, Y., Bouklas, N., Landis, C. M., and Huang, R., 2018, “A Linear Poroelastic
Analysis of Time-Dependent Crack-Tip Fields in Polymer Gels,” ASME J. Appl.
Mech., 85(11), p. 111011.

[25] Noselli, G., Lucantonio, A., McMeeking, R. M., and DeSimone, A., 2016,
“Poroelastic Toughening in Polymer Gels: A Theoretical and Numerical
Study,” J. Mech. Phys. Solids, 94, pp. 33-46.

[26] Yu, Y., Landis, C. M., and Huang, R., 2018, “Steady-State Crack Growth in
Polymer Gels: A Linear Poroelastic Analysis,” J. Mech. Phys. Solids, 118,
pp. 15-39.

[27] Yu, Y., Landis, C. M., and Huang, R., 2019, “Poroelastic Effects on Steady State
Crack Growth in Polymer Gels Under Plane Stress,” Mech. Mater. (submitted).

[28] Rice, J. R., 1968, “A Path Independent Integral and the Approximate Analysis of
Strain Concentration by Notches and Cracks,” ASME J. Appl. Mech., 35(2),
pp. 379-386.

[29] Yang, C., Yin, T., and Suo, Z., 2019, “Polyacrylamide Hydrogels. I. Network
Imperfection,” J. Mech. Phys. Solids, 131, pp. 43-55.

[30] Irwin, G., 1948, Fracturing of Metals, ASM, Cleveland, p. 147.

[31] Orowan, E., 1950, “Fatigue and Fracture of Metals,” Symposium at
Massachusetts Institute of Technology, New York.

[32] Knauss, W. G., 1970, “Delayed Failure—the Griffith Problem for Linearly
Viscoelastic Materials,” Int. J. Fracture Mechanics, 6(1), pp. 7-20.

[33] Knauss, W. G., 1973, “The Mechanics of Polymer Fracture,” ASME Appl. Mech.
Rev., 26(1), pp. 1-17.

[34] Schapery, R. A., 1975, “A Theory of Crack Initiation and Growth in Viscoelastic
Media,” Int. J. Fract., 11(1), pp. 141-159.

[35] Schapery, R. A., 1975, “A Theory of Crack Initiation and Growth in Viscoelastic
Media II. Approximate Methods of Analysis,” Int. J. Fract., 11(3), pp. 369-388.

[36] Schapery, R. A., 1975, “A Theory of Crack Initiation and Growth in Viscoelastic
Media,” Int. J. Fract., 11(4), pp. 549-562.

[37] Schapery, R. A., 1984, “Correspondence Principles and a Generalized J Integral
for Large Deformation and Fracture Analysis of Viscoelastic Media,”
Int. J. Fract., 25(3), pp. 195-223.

[38] Bouklas, N., Landis, C. M., and Huang, R., 2015, “A Nonlinear, Transient Finite
Element Method for Coupled Solvent Diffusion and Large Deformation of
Hydrogels,” J. Mech. Phys. Solids, 79, pp. 21-43.

[39] Kishimoto, K., Aoki, S., and Sakata, M., 1980, “On the Path Independent
Integral-J,” Eng. Fract. Mech., 13(4), pp. 841-850.

[40] Yang, F., Wang, J., and Chen, D., 2006, “The Energy Release Rate for
Hygrothermal Coupling Elastic Materials,” Acta Mech. Sin., 22(1), pp. 28-33.

[41] Gao, Y. F., and Zhou, M., 2013, “Coupled Mechano-Diffusional Driving Forces
for Fracture in Electrode Materials,” J. Power Sources, 230, pp. 176-193.

[42] Bouklas, N., and Huang, R., 2012, “Swelling Kinetics of Polymer Gels:
Comparison of Linear and Nonlinear Theories,” Soft Matter, 8(31), pp. 8194-8203.

[43] Biot, M. A., 1941, “General Theory of Three-Dimensional Consolidation,”
J. Appl. Phys., 12(2), pp. 155-164.

[44] Petch, N. J., and Stables, P., 1952, “Delayed Fracture of Metals Under Static
Load,” Nature, 169, pp. 842-843.

[45] Pearson, S., 1956, “Delayed Fracture of Sintered Alumina,” P. Phys. Soc. B,
69(12), pp. 1293-1296.

[46] Lindstrom, S. B., Kodger, T. E., Sprakel, J., and Weitz, D. A., 2012, “Structures,
Stresses, and Fluctuations in the Delayed Failure of Colloidal Gels,” Soft Matter,
8(13), pp. 3657-3664.

[47] Shahidzadeh-Bonn, N., Vie, P., Chateau, X., Roux, J.-N., and Bonn, D., 2015,
“Delayed Fracture in Porous Media,” Phys. Rev. Lett., 95(17), pp. 175501.

[48] van der Kooij, H. M., Dussi, S., van de Kerkhof, G. T., Frijns, R. A. M., van der
Gucht, J., and Sprakel, J., 2018, “Laser Speckle Strain Imaging Reveals the Origin
of Delayed Fracture in a Soft Solid,” Sci. Adv., 4(5), p. eaar1926.

[49] Rivlin, R. S., and Thomas, A. G., 1953, “Rupture of Rubber. I. Characteristic
Energy for Tearing,” J. Poly. Sci., 10(3), pp. 291-318.

[50] Franca, L. P, Frey, S. L., and Hughes, T. J. R., 1992, “Stabilized Finite-Element
Methods 1. Application to the Advective-Diffusive Model,” Comput. Meth. Appl.
Mech. Eng., 95(2), pp. 253-276.

[51] Hutchinson, J. W., 1983, “Fundamentals of the Phenomenological Theory of
Nonlinear Fracture Mechanics,” ASME J. Appl. Mech., 50(4b), pp. 1042-1051.

[52] Lawn, B., 1993, Fracture of Brittle Solids, 2nd ed., Cambridge University Press,
Cambridge, UK.

[53] Boger, L., Keip, M.-A., and Miehe, C., 2017, “Minimization and Saddle-Point
Principles for the Phase-Field Modeling of Fracture in Hydrogels,” Comput.
Mater. Sci., 138, pp. 474-485.

[54] Mao, Y., and Anand, L., 2018, “A Theory for Fracture of Polymeric Gels,”
J. Mech. Phys. Solids, 115, pp. 30-53.

Transactions of the ASME

I1¥268v9/5001L£0/€/.8/4Pd-joiE/SOIUBLOBWPal|dde/B10"BLUSE" UO08]|00|E)BIPaWSE//:SANY WOl Papeojumod

€ /8 wel

6102 J9qUIBAON (Z UO Josn unsny 1y sexa | Jo Aisiaaiun Aq Jpd'Go0L€0


http://dx.doi.org/10.1016/S0142-9612(03)00340-5
http://dx.doi.org/10.1557/mrs2006.122
http://dx.doi.org/10.1002/adma.200501612
http://dx.doi.org/10.1002/adma.200800534
http://dx.doi.org/10.1557/mrs.2012.32
http://dx.doi.org/10.1557/mrs.2012.32
http://dx.doi.org/10.1038/ncomms14230
http://dx.doi.org/10.1038/s41578-018-0018-7
http://dx.doi.org/10.1002/adma.200304907
http://dx.doi.org/10.1002/adma.200304907
http://dx.doi.org/10.1038/nature11409
http://dx.doi.org/10.1039/C3SM52272E
http://dx.doi.org/10.1039/C6SM01694D
https://dx.doi.org/10.1021/acs.macromol.7b01698
http://dx.doi.org/10.1016/j.eml.2014.11.004
http://dx.doi.org/10.1016/j.eml.2014.11.004
http://dx.doi.org/10.1016/j.foodhyd.2014.12.028
http://dx.doi.org/10.1126/science.280.5361.265
https://dx.doi.org/10.1021/ma1000173
http://dx.doi.org/10.1016/j.eml.2016.09.010
http://dx.doi.org/10.1038/nmat1666
http://dx.doi.org/10.1039/c2sm25553g
http://dx.doi.org/10.1115/1.4030587
http://dx.doi.org/10.1115/1.4030587
http://dx.doi.org/10.1098/rspa.1991.0116
http://dx.doi.org/10.1115/1.4007228
http://dx.doi.org/10.1016/j.euromechsol.2017.11.016
https://dx.doi.org/10.1115/1.4041040
https://dx.doi.org/10.1115/1.4041040
http://dx.doi.org/10.1016/j.jmps.2016.04.017
http://dx.doi.org/10.1016/j.jmps.2018.05.008
http://dx.doi.org/10.1115/1.3601206
http://dx.doi.org/10.1016/j.jmps.2019.06.018
http://dx.doi.org/10.1007/BF00183655
http://dx.doi.org/10.1007/BF00034721
http://dx.doi.org/10.1007/BF00116363
http://dx.doi.org/10.1007/BF01140837
http://dx.doi.org/10.1016/j.jmps.2015.03.004
http://dx.doi.org/10.1016/0013-7944(80)90015-6
http://dx.doi.org/10.1007/s10409-006-0087-5
http://dx.doi.org/10.1016/j.jpowsour.2012.12.034
http://dx.doi.org/10.1039/c2sm25467k
https://dx.doi.org/10.1063/1.1712886
http://dx.doi.org/10.1038/169842a0
https://dx.doi.org/10.1088/0370-1301/69/12/313
https://dx.doi.org/10.1039/c2sm06723d
https://dx.doi.org/10.1103/PhysRevLett.95.175501
https://dx.doi.org/10.1126/sciadv.aar1926
https://dx.doi.org/10.1002/pol.1953.120100303
https://dx.doi.org/10.1016/0045-7825(92)90143-8
https://dx.doi.org/10.1016/0045-7825(92)90143-8
https://dx.doi.org/10.1115/1.3167187
http://dx.doi.org/10.1016/j.commatsci.2017.06.010
http://dx.doi.org/10.1016/j.commatsci.2017.06.010
http://dx.doi.org/10.1016/j.jmps.2018.02.008

	1  Introduction
	2  J-Integral and Energy Release Rate
	3  Time-Dependent (Delayed) Fracture
	3.1  Short-Time Limits
	3.2  Long-Time Limits
	3.3  Numerical Results
	3.4  Delayed Fracture

	4  Rate-Dependent Fracture: Steady-State Crack Growth
	4.1  Slow Crack Limit (Pe < 1)
	4.2  Fast Crack Limit (Pe ≫ 1)
	4.3  Numerical Results
	4.4  Rate-Dependent Fracture

	5  A Poroelastic Cohesive Zone Model
	6  Closing Remarks
	 Funding Data
	 References

